JOINT MODELING OF CODE-SWITCHED AND MONOLINGUAL ASR VIA CONDITIONAL FACTORIZATION

Brian Yan¹, Chunlei Zhang², Meng Yu², Shi-Xiong Zhang², Siddharth Dalmia¹, Dan Berrebbi¹, Chao Weng³, Shinji Watanabe¹, Dong Yu²

¹Carnegie Mellon University, USA, ²Tencent AI Lab, USA, ³Tencent AI Lab, China

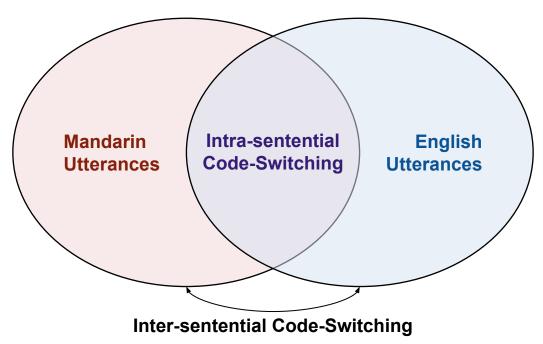
Carnegie Mellon University Language Technologies Institute

Session: SPE-14: Multi-lingual ASR Session Time: Sunday, 8 May, 23:00 - 23:45 (Singapore Time, UTC +8)

Code-switching (CS) \subset Bilingualism

Intra-sentential CS is a **subset** of bilingual conversation, which is often 1 language at a time

Our objective is to model the **entire bilingual task**:



Bilingual Speech Recognition

Let ...

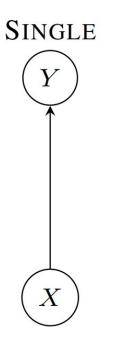
$$X = \{\mathbf{x}_t \in \mathbb{R}^D | t = 1, ..., T\}$$
 denote speech features and

$$Y = \{y_t \in (\mathcal{V}^M \cup \mathcal{V}^E) | n = 1, ..., L\}$$
 denote bilingual transcriptions.

Note that Y may be purely monolingual or code-switched.

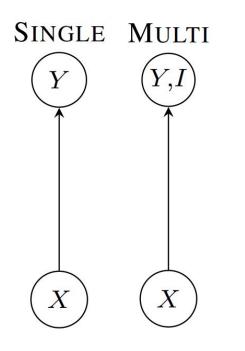
We wish to predict Y given X.

Direct Formulations of Bilingual ASR



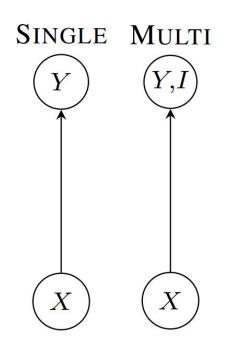
- Model Y as a **single** conditionally dependent variable
 - Hybrid: Phone merging (Sivasankaran 2018)
 - E2E: LID token method (Zhang 2020)

Direct Formulations of Bilingual ASR



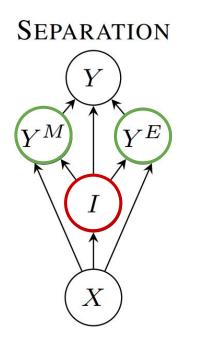
- Model Y as a **single** conditionally dependent variable
 - Hybrid: Phone merging (Sivasankaran 2018)
 - E2E: LID token method (Zhang 2020)
- Model multiple dependents: Y and language ID, I
 E2E: joint LID and ASR (Zeng 2019)

Direct Formulations of Bilingual ASR



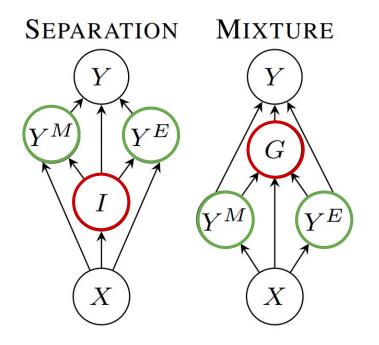
- Model Y as a **single** conditionally dependent variable
 - Hybrid: Phone merging (Sivasankaran 2018)
 - E2E: LID token method (Zhang 2020)
- Model multiple dependents: Y and language ID, I
 E2E: joint LID and ASR (Zeng 2019)
- Combining 2 unrelated languages = more complex

Divide-and-Conquer Formulations of Bilingual ASR



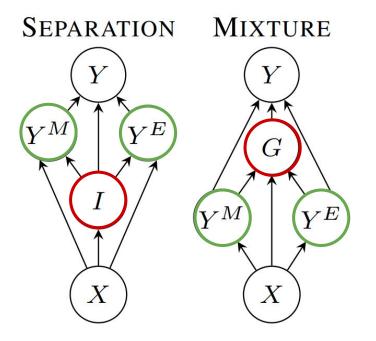
- Hybrid: LID to monolingual ASR cascade (Chan 2Ó04)

Divide-and-Conquer Formulations of Bilingual ASR



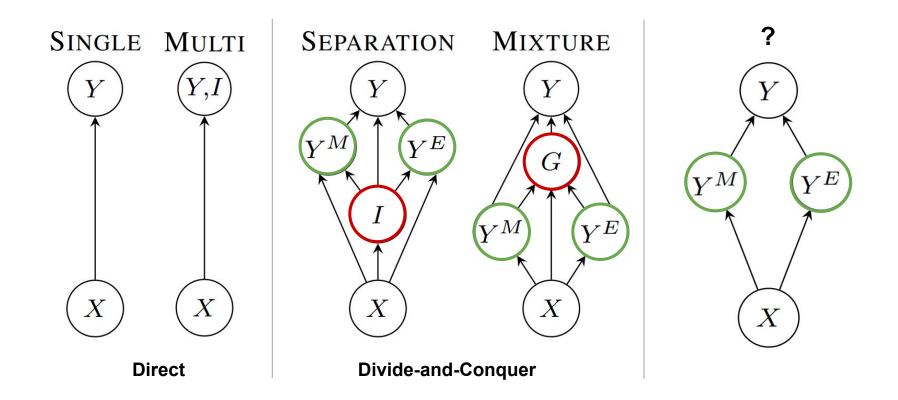
- **Separate** then Recognize
 - Hybrid: LID to monolingual ASR cascade (Chan 0 2004)
- •
- Mixture of Monolingual Experts Hybrid: Frame-level posterior weighting (Weiner 2012)
 - E2E: Mixture of experts (Lu 2020, Dalmia 2021) Ο

Divide-and-Conquer Formulations of Bilingual ASR

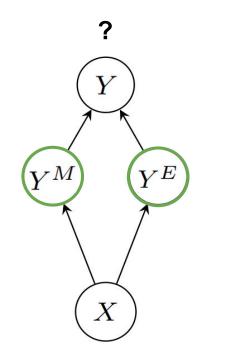


- **Separate** then Recognize
 - Hybrid: LID to monolingual ASR cascade (Chan 0 2004)
- - Mixture of Monolingual Experts Hybrid: Frame-level posterior weighting (Weiner 2012)
 - E2E: Mixture of experts (Lu 2020, Dalmia 2021) 0
- Division of monolingual tasks
 - simpler, more compatible with monolingual data
- Dependence on quality of "divider" module Risk of error propagation, increased complexity

Our Motivation



Desiderata

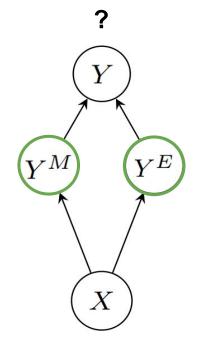


1. Can we build CS + bilingual ASR with **monolingual sub-components**...

2. ...where the final output is conditioned only on those 2 sub-components and nothing else?

3. And does such a conditional approach more efficiently leverage monolingual and CS training data?

Label-to-Frame Synchronization



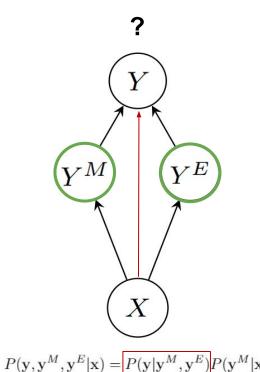
 $P(\mathbf{y}, \mathbf{y}^M, \mathbf{y}^E | \mathbf{x}) = P(\mathbf{y} | \mathbf{y}^M, \mathbf{y}^E) P(\mathbf{y}^M | \mathbf{x}) P(\mathbf{y}^E | \mathbf{x})$

lf ...

 Y^M = 什么是, Y^E = code-switching

Can Y be determined?

The Need for Label-to-Frame Synchronization

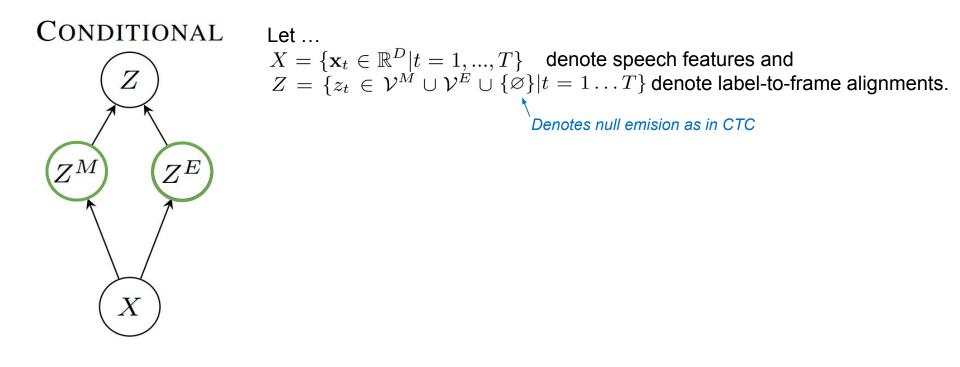


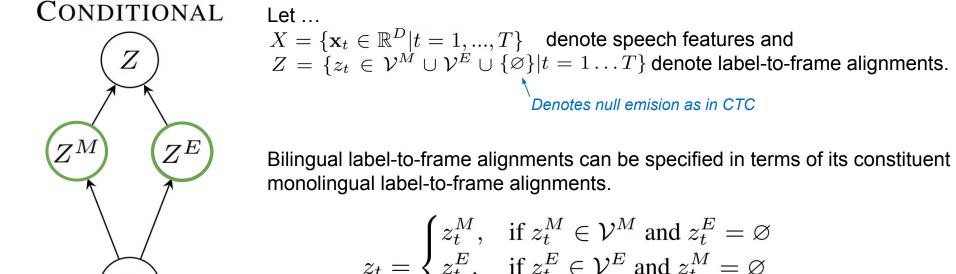
lf ...

 Y^M = 什么是, Y^E = code-switching

Can Y be determined?

 \rightarrow No! We're missing ordering information \rightarrow This formulation is not conditionally independent





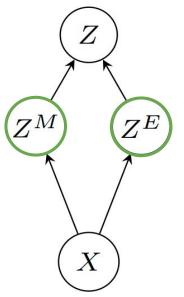
$$\begin{bmatrix} z_t & \vdots & z_t \\ \emptyset, & \text{if } z_t^M = \emptyset \text{ and } z_t^E = \emptyset \\ \end{bmatrix}$$

By definition, at least one side is null for a given t

CONDITIONAL

Formulate likelihood in terms of label-to-frame alignments:

$$p(Y|X) = \sum_{Z \in \mathcal{Z}(Y)} p(Z|X)$$



CONDITIONAL Z^E . 7M

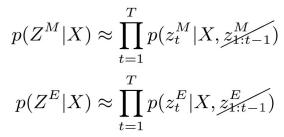
Formulate likelihood in terms of label-to-frame alignments:

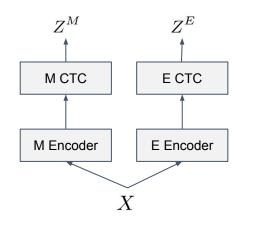
$$p(Y|X) = \sum_{Z \in \mathcal{Z}(Y)} p(Z|X)$$

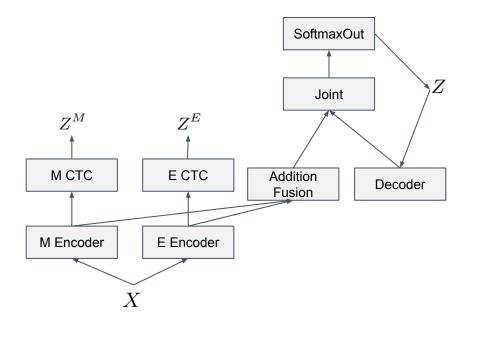
Jointly model CS and Monolingual parts, w/ conditional factorization: $p(Z|X) = p(Z, Z^{M}, Z^{E}|X)$ $= p(Z|Z^{M}, Z^{E}, X)p(Z^{M}, Z^{E}|X)$ $\approx p(Z|Z^{M}, Z^{E}, X)p(Z^{M}|X)p(Z^{E}|X)$ Independence

Conditional independence

Monolingual CTC Modules:







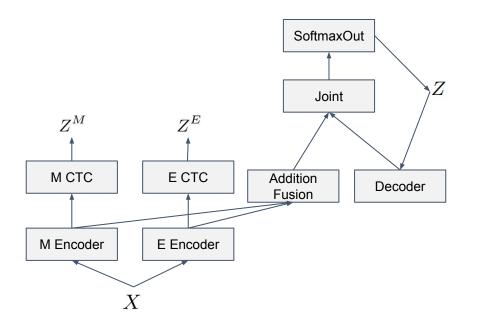
Monolingual CTC Modules:

$$p(Z^M|X) \approx \prod_{t=1}^T p(z_t^M|X, \underline{z_{t:t-1}^M})$$
$$p(Z^E|X) \approx \prod_{t=1}^T p(z_t^E|X, \underline{z_{t:t-1}^E})$$

Bilingual RNN-T Module:

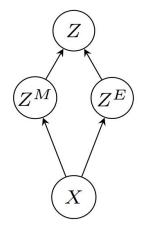
$$p(Z|Z^M, Z^E) = \prod_{i=1}^{T+L} p(z_i|Z^M, Z^E, z_{1:i-1})$$

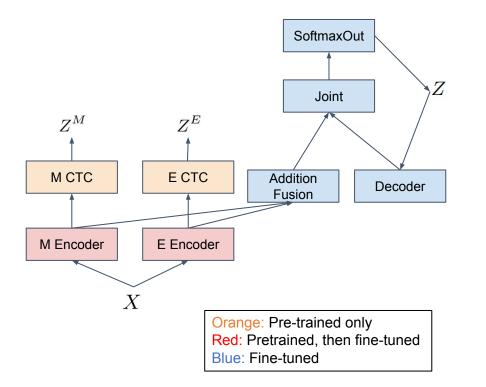
$$\begin{aligned} \mathbf{h}_{t}^{\text{ENC}} &= \mathbf{h}_{t}^{M} + \mathbf{h}_{t}^{E} \\ \mathbf{h}_{l}^{\text{DEC}} &= \text{DECODER}(z_{1:l-1}) \\ \mathbf{h}_{t,l}^{\text{JNT}} &= \text{JOINT}(\mathbf{h}_{t}^{\text{ENC}}, \mathbf{h}_{l}^{\text{DEC}}) \\ p(z_{i} | \mathbf{h}^{M}, \mathbf{h}^{E}, z_{1:i-1}) &= \text{SOFTMAXOUT}(\mathbf{h}_{t,l}^{\text{JNT}}) \end{aligned}$$



Full Network:

$$p(Y|X) \approx \underbrace{\sum_{\mathcal{Z}} p(Z|Z^M, Z^E)}_{\triangleq p_{\mathrm{rmnt}}(Y|Z^M, Z^E)} \underbrace{\sum_{\mathcal{Z}^M} p(Z^M|X)}_{\triangleq p_{\mathrm{ctc}}(Y^M|X)} \underbrace{\sum_{\mathcal{Z}^E} p(Z^E|X)}_{\triangleq p_{\mathrm{ctc}}(Y^E|X)}$$

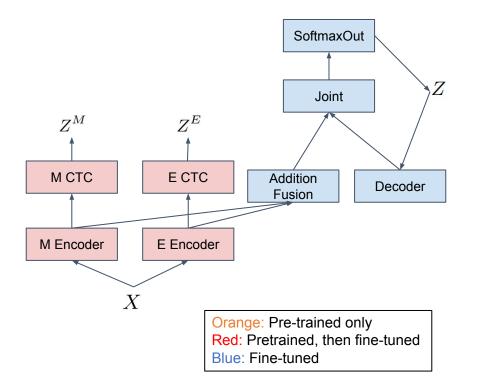




Implicit conditioning via pre-training:

- Pre-train: \mathcal{L}_{M-CTC} , \mathcal{L}_{E-CTC}
- Fine-tune:

 $\lambda \mathcal{L}_{\text{RNNT}}$



Explicit conditioning via masking:

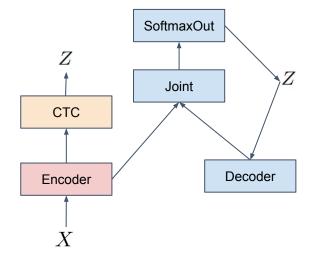
- Pre-train: \mathcal{L}_{M-CTC} , \mathcal{L}_{E-CTC}
- Fine-tune:

 $\mathcal{L}_{LS} = \lambda \mathcal{L}_{RNNT} + (1 - \lambda)(\mathcal{L}_{M_CTC} + \mathcal{L}_{E_CTC})$

 Monolingual ground truths are obtained via language-specific masking of the bilingual ground truth → referred to as Language-Separation

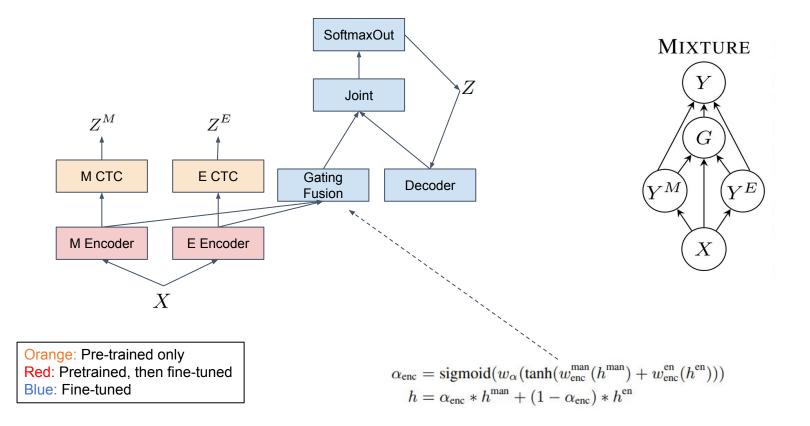
Original Bilingual g.t. Masked Mandarin g.t. Masked English g.t. 什么是 Code-Switching 什么是 <en> <zh> Code-Switching

Single RNN-T Baseline



Orange: Pre-trained only Red: Pretrained, then fine-tuned Blue: Fine-tuned

Gating RNN-T Baseline



Experimental Setup

Data:

- 200h Mandarin-English CS data from ASRU'19 challenge
- 500h monolingual Mandarin data from ASRU'19 challenge
 - 200h subset used for fine-tuning
- **700h monolingual accented English data** from King-ASR-190
 - 200h subset used for fine-tuning

Evaluation:

- **CS set** as measured by Mixed Error Rate (MER)
- Monolingual Mandarin set as measured by Character Error Rate (CER)
- Monolingual English set as measured by Word Error Rate (WER)

Main Results

Model Type	Model Name	Pre-trained Encoder(s)	Fine-tuning Data	COD MER	E-SWITC CER	CHED WER	Mono-Man CER	Mono-Eng WER
Direct	Vanilla RNN-T [21, 24]	1	CS	12.3	9.9	34.3	17.9	81.4
Mixture	Gating RNN-T [22, 24]	1	CS	11.5	9.1	33.0	17.7	78.3
Conditional	Our Proposed Model	1	CS	11.5	9.1	33.2	15.5	82.9
Conditional	+ Language-Separation (LS)	1	CS	11.1	8.7	32.7	15.3	82.7
Direct	Single RNN-T [21, 24]	1	CS + M	11.3	9.3	30.8	6.5	17.8
Mixture	Gating RNN-T [22, 24]	1	CS + M	11.2	8.8	34.7	5.7	34.6
Conditional	Our Proposed Model	1	CS + M	10.3	8.2	29.5	5.4	16.5
Conditional	+ Language-Separation (LS)	1	CS + M	10.2	8.1	29.2	5.3	16.3

• All models perform significantly better on monolingual sets when using monolingual fine-tuning

Main Results

Model Type	Model Name	Pre-trained Encoder(s)	Fine-tuning Data	COD MER	E-SWITC CER	CHED WER	Mono-Man CER	Mono-Eng WER
Direct	Vanilla RNN-T [21, 24]	1	CS	12.3	9.9	34.3	17.9	81.4
Mixture	Gating RNN-T [22, 24]	1	CS	11.5	9.1	33.0	17.7	78.3
Conditional	Our Proposed Model	1	CS	11.5	9.1	33.2	15.5	82.9
Conditional	+ Language-Separation (LS)	1	CS	11.1	8.7	32.7	15.3	82.7
Direct	Single RNN-T [21, 24]	1	CS + M	11.3	9.3	30.8	6.5	17.8
Mixture	Gating RNN-T [22, 24]	1	CS + M	11.2	8.8	34.7	5.7	34.6
Conditional	Our Proposed Model	1	CS + M	10.3	8.2	29.5	5.4	16.5
Conditional	+ Language-Separation (LS)	1	CS + M	10.2	8.1	29.2	5.3	16.3

- All models perform significantly better on monolingual sets when using monolingual fine-tuning
- Gating RNN-T outperforms Single RNN-T on CS set, but not on monolingual English

Main Results

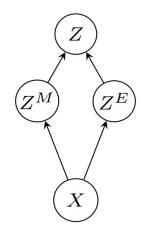
Model Type	Model Name	Pre-trained Encoder(s)	Fine-tuning Data	COD MER	E-SWITC CER	CHED WER	Mono-Man CER	Mono-Eng WER
Direct	Vanilla RNN-T [21, 24]	1	CS	12.3	9.9	34.3	17.9	81.4
Mixture	Gating RNN-T [22, 24]	1	CS	11.5	9.1	33.0	17.7	78.3
Conditional	Our Proposed Model	1	CS	11.5	9.1	33.2	15.5	82.9
Conditional	+ Language-Separation (LS)	1	CS	11.1	8.7	32.7	15.3	82.7
Direct	Single RNN-T [21, 24]	1	CS + M	11.3	9.3	30.8	6.5	17.8
Mixture	Gating RNN-T [22, 24]	1	CS + M	11.2	8.8	34.7	5.7	34.6
Conditional	Our Proposed Model	1	CS + M	10.3	8.2	29.5	5.4	16.5
Conditional	+ Language-Separation (LS)	1	CS + M	10.2	8.1	29.2	5.3	16.3

- All models perform significantly better on monolingual sets when using monolingual fine-tuning
- Gating RNN-T outperforms Single RNN-T on CS set, but not on monolingual English
- Conditional RNN-T outperforms both baselines across CS and monolingual sets

Analysis of Language-Separation (LS) Ability

Recall:

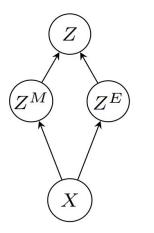
$$z_t = \begin{cases} z_t^M, & \text{if } z_t^M \in \mathcal{V}^M \text{ and } z_t^E = \varnothing \\ z_t^E, & \text{if } z_t^E \in \mathcal{V}^E \text{ and } z_t^M = \varnothing \\ \varnothing, & \text{if } z_t^M = \varnothing \text{ and } z_t^E = \varnothing \end{cases}$$



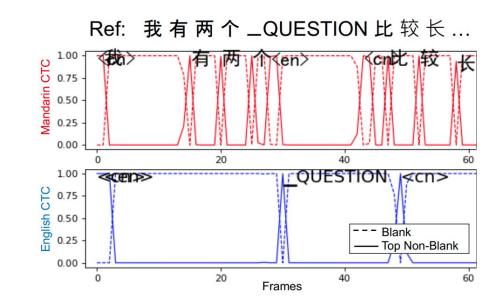
Analysis of Language-Separation (LS) Ability

Recall:

$$z_{t} = \begin{cases} z_{t}^{M}, & \text{if } z_{t}^{M} \in \mathcal{V}^{M} \text{ and } z_{t}^{E} = \varnothing \\ z_{t}^{E}, & \text{if } z_{t}^{E} \in \mathcal{V}^{E} \text{ and } z_{t}^{M} = \varnothing \\ \varnothing, & \text{if } z_{t}^{M} = \varnothing \text{ and } z_{t}^{E} = \varnothing \end{cases}$$



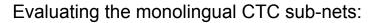
Visualizing Language Separation:



Analysis of Language-Separation (LS) Ability

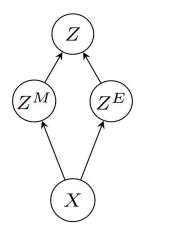
Recall:

$$z_t = \begin{cases} z_t^M, & \text{if } z_t^M \in \mathcal{V}^M \text{ and } z_t^E = \varnothing \\ z_t^E, & \text{if } z_t^E \in \mathcal{V}^E \text{ and } z_t^M = \varnothing \\ \varnothing, & \text{if } z_t^M = \varnothing \text{ and } z_t^E = \varnothing \end{cases}$$



	MAN PORTION OF CS			ENG PORTION OF CS			
Model	Sub-Net	CER	INS	Sub-Net	WER	INS	
Cond. RNN-T				$p(Z^E X)$	42.7	7.9	
Cond. RNN-T + LS	$p(Z^M X)$	8.6	0.7	$p(Z^E X)$	37.1	4.6	

- We evaluate the monolingual CTC outputs against the language-specific portions of the CS reference
- Both models can perform reasonable language diarization
- Conditional RNN-T + LS has reduced insertion errors



Conditional Independence of Bilingual Module

Recall:

 $p(Z|X) = p(Z, Z^M, Z^E|X)$ $= p(Z|Z^M, Z^E, X)p(Z^M, Z^E|X)$ $\approx p(Z|Z^M, Z^E, X)p(Z^M|X)p(Z^E|X)$ Conditional independence Z Z^E Z^M X

Conditional Independence of Bilingual Module

Recall:

$$p(Z|X) = p(Z, Z^{M}, Z^{E}|X)$$

$$= p(Z|Z^{M}, Z^{E}, X)p(Z^{M}, Z^{E}|X)$$

$$\approx p(Z|Z^{M}, Z^{E}, X)p(Z^{M}|X)p(Z^{E}|X)$$
Conditional independence
$$Z^{M}$$

$$Z^{E}$$

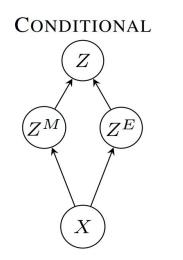
$$X$$

Experimental Validation:

	Bilingual	CODE-SWITCHED			
Model	Condition	MER	CER	WER	
Cond. RNN-T + LS	$p(Z Z^M, Z^E)$	11.1	8.9	31.1	
3-Enc. RNN-T + LS	$p(Z Z^M, Z^E, X)$	11.2	9.0	31.1	

- The 3-encoder variant removes the conditional independence assumption by directly encoding speech features, *X*, to the bilingual module
- This dependency adds no additional information as the monolingual alignments are enough to determine the bilingual alignment

Recap: Did we satisfy our desiderata?



Can we build CS + bilingual ASR with **monolingual sub-components**...

...where the final output is conditioned only on those 2 sub-components and nothing else?

And does such a conditional approach more efficiently leverage monolingual and CS training data?

Thank You!

Session: SPE-14: Multi-lingual ASR Session Time: Sunday, 8 May, 23:00 - 23:45 (Singapore Time, UTC +8)

Brian Yan¹, Chunlei Zhang², Meng Yu², Shi-Xiong Zhang², Siddharth Dalmia¹, Dan Berrebbi¹, Chao Weng³, Shinji Watanabe¹, Dong Yu²

¹Carnegie Mellon University, USA, ²Tencent AI Lab, USA, ³Tencent AI Lab, China

byan@cs.cmu.edu

