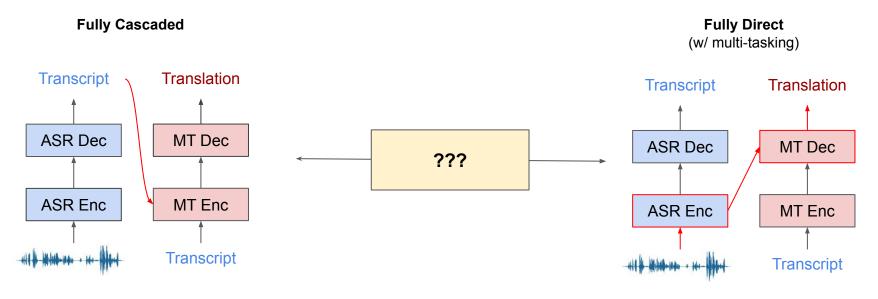
CMU's IWSLT 2022 Dialect Speech Translation System

Brian Yan¹ Patrick Fernandes^{1,2} Siddharth Dalmia¹ Jiatong Shi¹ Yifan Peng³ Dan Berrebbi¹ Xinyi Wang¹ Graham Neubig¹ Shinji Watanabe^{1,4} ¹Language Technologies Institute, Carnegie Mellon University, USA ²Instituto Superior Técnico & LUMLIS (Lisbon ELLIS Unit), Portugal ³Electrical and Computer Engineering, Carnegie Mellon University, USA ⁴Human Language Technology Center of Excellence, Johns Hopkins University, USA {byan, pfernand, sdalmia, jiatongs}@cs.cmu.edu

Day1	May 26, 2022
Time (Dublin)	Session
15:30-17:30	Poster Session: System Papers

The End-to-End Fallacy



Con: early error propagation

Con: sensitive to noisy ASR transcription

Pro: relatively tons of ASR and MT data

Pro: post-processing (e.g. ROVER) / external models for ASR

Pro: no intermediate representation

Pro: no intermediate representation

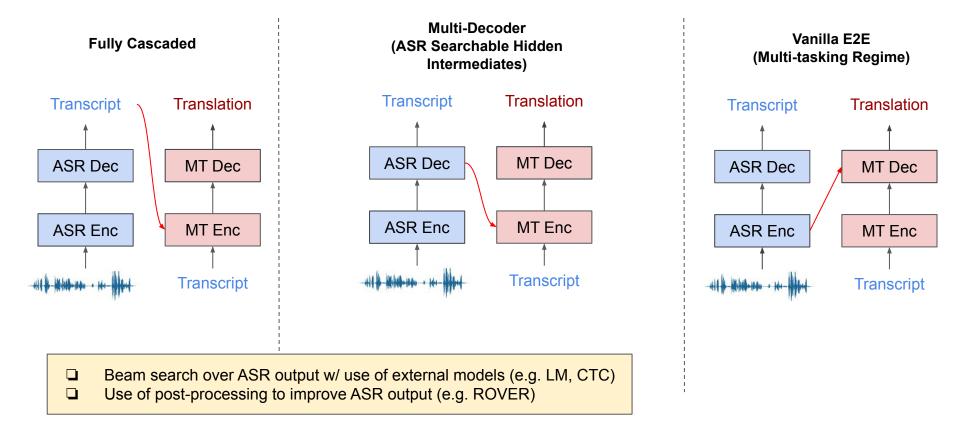
Con: less ST data + less data efficient with ASR & MT pre-training multi-task (wasted subnets)

Con: single retrieval stage

Hybrid Approaches to Speech Translation

- 1. Multi-Decoder with Searchable Hidden Intermediates
- 2. Minimum Bayes-Risk Decoding

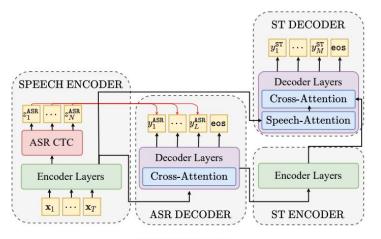
Multi-Decoder vs. Cascade vs. Vanilla E2E



Siddharth Dalmia, Brian Yan, Vikas Raunak, Florian Metze, and Shinji Watanabe, "Searchable Hidden Intermediates for End-to-End Models of Decomposable Sequence Tasks," Proc. NAACL'21 (link)

Multi-Decoder with Searchable Hidden Intermediates

 $\mathcal{L} = \lambda_1 \mathcal{L}_{CE}^{ASR} + \lambda_2 \mathcal{L}_{CTC}^{ASR} + \lambda_3 \mathcal{L}_{CE}^{ST}$



(a) Multi-Decoder

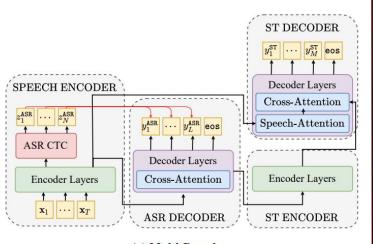
+Searchable Hidden Intermediates: ASR decoder representations are retrieved (e.g. via beam search) and passed to the ST Encoder

Algorithm 1 Beam Search for Hidden Intermediates: We perform beam search to approximate the most likely sequence for the sub-task $\mathcal{A} \rightarrow \mathcal{B}$, $\mathbf{y}_{\text{BEAM}}^{\mathcal{B}}$, while collecting the corresponding DECODER_B hidden representations, $\mathbf{h}_{\text{BEAM}}^{D_{\mathcal{B}}}$. The output $\mathbf{h}_{\text{BEAM}}^{D_{\mathcal{B}}}$, is passed to the final sub-network to predict final output \mathcal{C} and $\mathbf{y}_{\text{BEAM}}^{\mathcal{B}}$ is used for monitoring performance on predicting \mathcal{B} .

1: Initialize: BEAM \leftarrow {sos}; k \leftarrow beam size; 2: $\mathbf{h}^{E_{A}} \leftarrow \text{ENCODER}_{4}(\mathbf{x})$ 3: for *l*=1 to max_{STEPS} do for $\mathbf{y}_{l-1}^{\mathcal{B}} \in \text{BEAM}$ do $\mathbf{h}_{l}^{D_{\mathcal{B}}} \leftarrow \text{Decoder}_{\mathcal{B}}(\mathbf{h}^{E_{\mathcal{A}}}, \mathbf{y}_{l-1}^{\mathcal{B}})$ 5: 6: 7: $\mathcal{H} \leftarrow (s_l, \mathbf{y}_l^{\mathcal{B}}, \mathbf{h}_l^{D_{\mathcal{B}}})$ 8: end for 9: end for 10: $BEAM \leftarrow arg^k max(\mathcal{H})$ 11: 12: end for 13: $(s^{\mathcal{B}}, \mathbf{y}_{\text{BEAM}}^{\mathcal{B}}, \mathbf{h}_{\text{BEAM}}^{D_{\mathcal{B}}}) \leftarrow \operatorname{argmax}(\text{BEAM})$ 14: **Return** $\mathbf{y}_{\text{BEAM}}^{\mathcal{B}} \rightarrow \text{SUB}_{\mathcal{A} \rightarrow \mathcal{B}}\text{NET}$ Monitoring 15: **Return** $\mathbf{h}_{\text{BEAM}}^{D_{\mathcal{B}}} \rightarrow \text{Final SUB}_{\mathcal{B} \rightarrow \mathcal{C}}\text{NET}$ Siddharth Dalmia, Brian Yan, Vikas Raunak, Florian Metze, and Shinji Watanabe, "Searchable Hidden Intermediates for End-to-End Models of Decomposable Sequence Tasks," Proc. NAACL'21 (link)

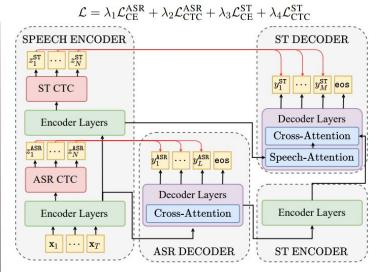
Multi-Decoder with Searchable Hidden Intermediates

 $\mathcal{L} = \lambda_1 \mathcal{L}_{CE}^{ASR} + \lambda_2 \mathcal{L}_{CTC}^{ASR} + \lambda_3 \mathcal{L}_{CE}^{ST}$



(a) Multi-Decoder

+Searchable Hidden Intermediates: ASR decoder representations are retrieved (e.g. via beam search) and passed to the ST Encoder



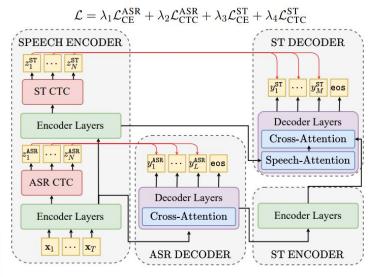
(b) Multi-Decoder w/ Hierarchical Encoder + CTC/Attn ST Decoding

+Hierarchical Encoder: re-orders speech encoder
+Joint CTC/Attn ST Decoding: length normalization
+ASR CTC Sampling: simulates ASR errors in training

Siddharth Dalmia, Brian Yan, Vikas Raunak, Florian Metze, and Shinji Watanabe, "Searchable Hidden Intermediates for End-to-End Models of Decomposable Sequence Tasks," Proc. NAACL'21 (link)

Multi-Decoder with Searchable Hidden Intermediates

			test1
		Model Name	BLEU(†)
	P	Encoder-Decoder	16.0
		Multi-Decoder	17.1
+2.4		+ ASR CTC Sampling	17.6
BLEU		+ Hierarchical Encoder	17.9
		+ Joint CTC/Attn ST Decoding (D4)	18.2
	P	+ ASR CTC Sampling	18.4



(b) Multi-Decoder w/ Hierarchical Encoder + CTC/Attn ST Decoding

+Hierarchical Encoder: re-orders speech encoder +Joint CTC/Attn ST Decoding: length normalization +ASR CTC Sampling: simulates ASR errors in training Siddharth Dalmia, Brian Yan, Vikas Raunak, Florian Metze, and Shinji Watanabe, "Searchable Hidden Intermediates for End-to-End Models of Decomposable Sequence Tasks," Proc. NAACL'21 (<u>link</u>)

Guiding Multi-Decoder Representations

MT/ST Posterior Combination

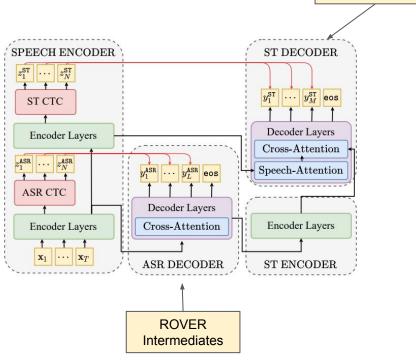
ASR Decoder:

- We retrieve the hidden representations for ASR outputs generated by ROVER combination
- No intermediate beam search is required

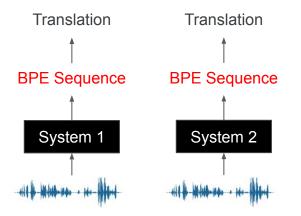
ST Decoder:

 External MT/ST models are used for posterior combination, along with joint CTC/Attn. ST decoding

*we do not consider these Multi-Decoder variants to be purely E2E

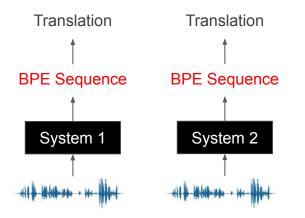


Minimum Bayes-Risk Decoding

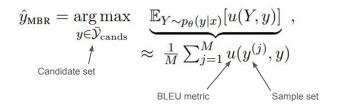


- Posterior comb. distinct BPE vocabularies?
- ROVER-like align-then-vote fit for translation?

Minimum Bayes-Risk Decoding



- Posterior comb. distinct BPE vocabularies?
- ROVER-like align-then-vote fit for translation?



- Both systems generate candidates and samples
- Risk of each candidate is measured as the avg.
 BLEU against all of the samples as references
- Systems can be black boxes

Minimum Bayes-Risk Decoding

			Child	Dialect	test1	test2
ID	Туре	Model Name	System(s)	Transfer	BLEU(†)	BLEU(†)
C1	Cascade	ASR Mixing Cascade	A1,B1	×	16.4	-
C2	Cascade	+ ASR Rover Comb.	A2,B1	×	16.7	-
C3	Cascade	+ MT Posterior Comb.	A2,B2	×	17.5	18.6
C4	Cascade	ASR Mixing Cascade	A3, B3	1	17.3	-
C5	Cascade	+ ASR Rover Comb.	A4,B3	1	17.4	-
C6	Cascade	+ MT Posterior Comb.	A4,B4	1	17.9	19.4
D1	E2E ST	Hybrid Multi-Decoder	-	×	17.7	-
D2	Mix	+ ROVER Intermediates	A2	×	18.1	19.1
D3	Mix	+ ST/MT Posterior Comb.	A2, B5	×	18.7	19.7
D4	E2E ST	Hybrid Multi-Decoder	-	1	18.2	-
D5	Mix	+ ROVER Intermediates	A4	1	18.3	19.5
D6	Mix	+ ST/MT Posterior Comb.	A4, B5	1	18.9	19.8
E1	Mix	Min. Bayes-Risk Ensemble	C3,D3	×	19.2	20.4 +0
E2	Mix	Min. Bayes-Risk Ensemble	C6,D6	1	19.5	20.8

+1.3 BLEU

Thanks!

CMU's IWSLT 2022 Dialect Speech Translation System

Brian Yan¹ Patrick Fernandes^{1,2} Siddharth Dalmia¹ Jiatong Shi¹
 Yifan Peng³ Dan Berrebbi¹ Xinyi Wang¹ Graham Neubig¹ Shinji Watanabe^{1,4}
 ¹Language Technologies Institute, Carnegie Mellon University, USA
 ²Instituto Superior Técnico & LUMLIS (Lisbon ELLIS Unit), Portugal
 ³Electrical and Computer Engineering, Carnegie Mellon University, USA
 ⁴Human Language Technology Center of Excellence, Johns Hopkins University, USA
 {byan, pfernand, sdalmia, jiatongs}@cs.cmu.edu