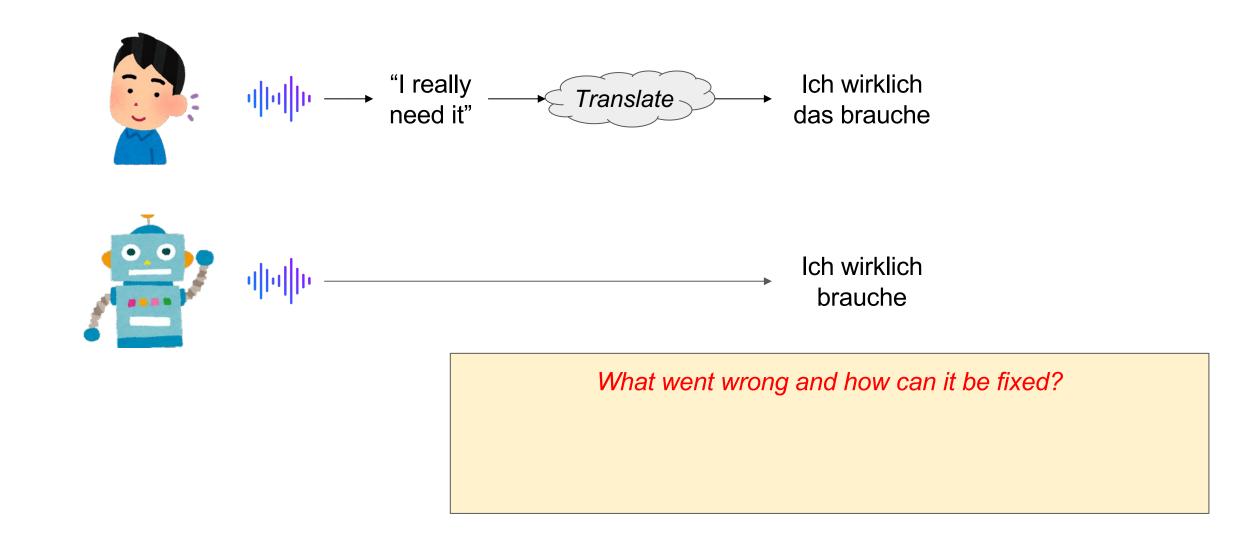


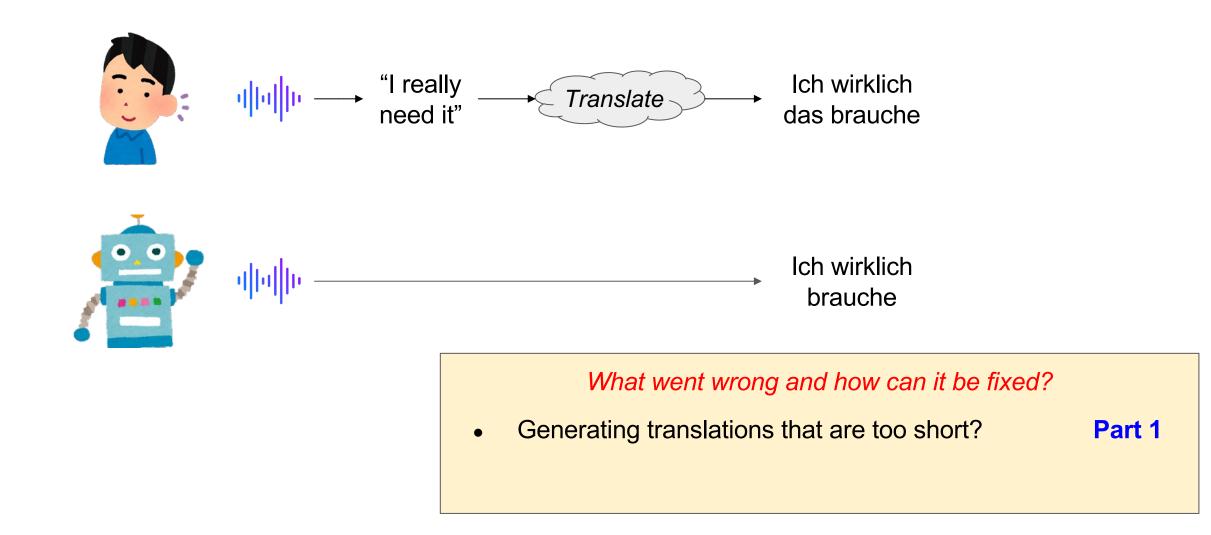
Controllable and Explainable End-to-End Speech Translation

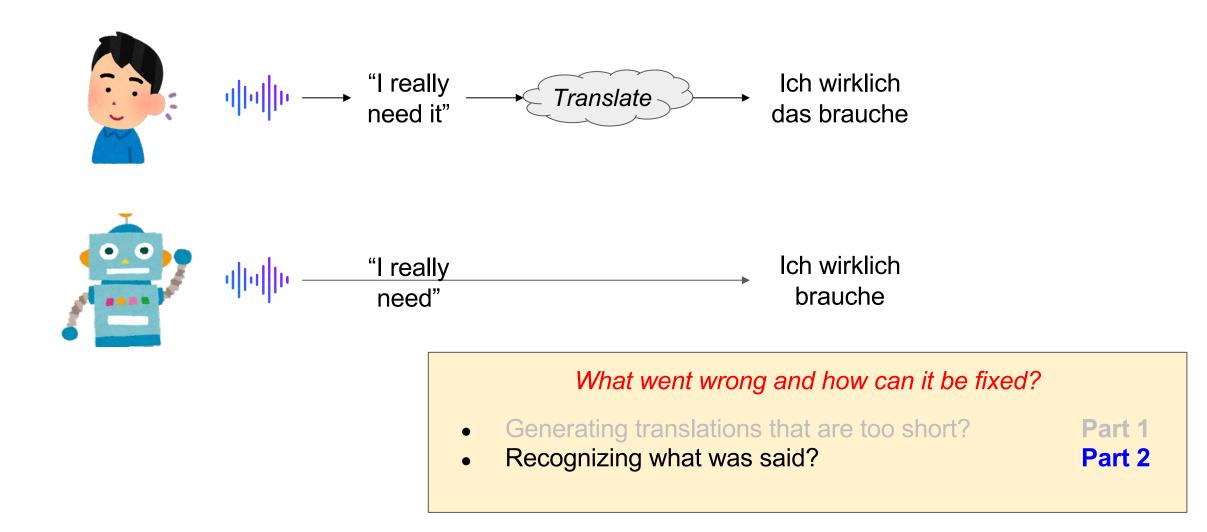
Shinji Watanabe and Brian Yan

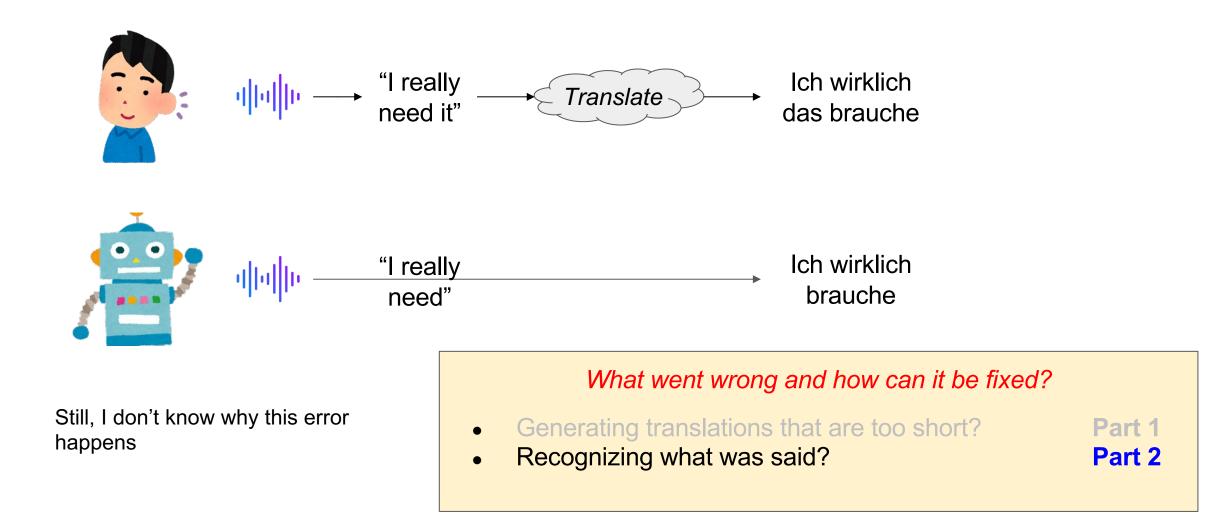
Language Technologies Institute Carnegie Mellon University

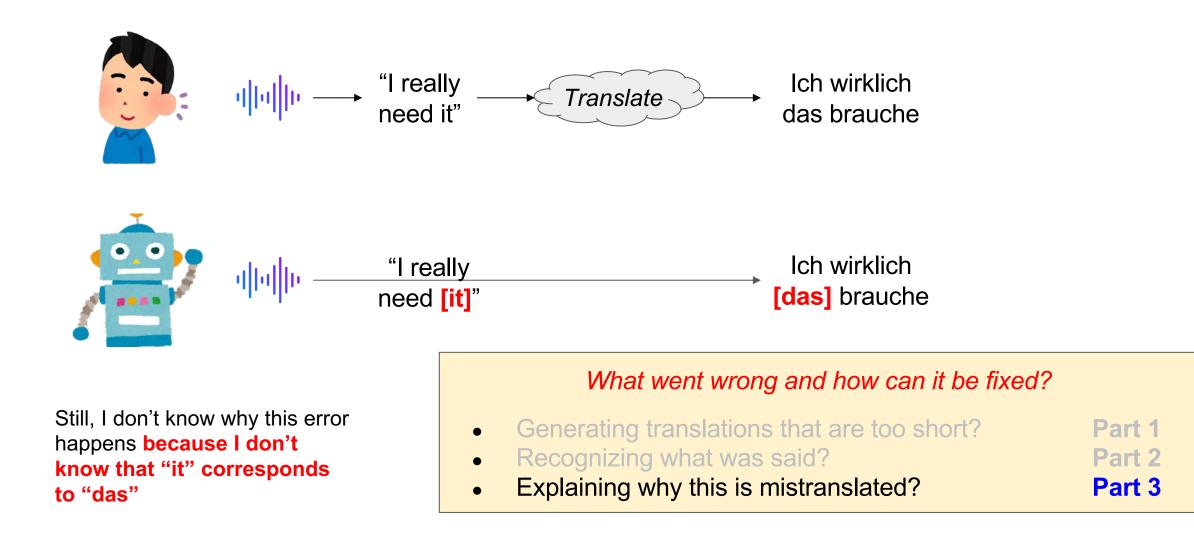
SIG SLT Seminar, November 18, 2022











Today's Talk

- CMU's IWSLT 2022 Dialect Speech Translation System
 - **Part 1:** Controlling ST output lengths via joint CTC/attention
 - **Part 2:** Controlling/explaining ST via searchable ASR intermediates

- Explainable E2E Speech Translation via Operation Sequence Generation
 - **Part 3:** Explaining ST via word-level ASR alignments

Today's Talk

- CMU's IWSLT 2022 Dialect Speech Translation System
 - Part 1: Controlling ST output lengths via joint CTC/attention
 - **Part 2:** Controlling/explaining ST via searchable ASR intermediates

- Explainable E2E Speech Translation via Operation Sequence Generation
 - Part 3: Explaining ST via word-level ASR alignments

CMU's IWSLT 2022 Dialect Speech Translation System

Brian Yan¹ Patrick Fernandes^{1,2} Siddharth Dalmia¹ Jiatong Shi¹ Yifan Peng³ Dan Berrebbi¹ Xinyi Wang¹ Graham Neubig¹ Shinji Watanabe^{1,4} ¹Language Technologies Institute, Carnegie Mellon University, USA ²Instituto Superior Técnico & LUMLIS (Lisbon ELLIS Unit), Portugal ³Electrical and Computer Engineering, Carnegie Mellon University, USA ⁴Human Language Technology Center of Excellence, Johns Hopkins University, USA {byan, pfernand, sdalmia, jiatongs}@cs.cmu.edu

Abstract

In particular, our contributions are the following:

This paper describes CMU's submissions to the IWSLT 2022 dialect speech translation (ST) shared task for translating Tunisian-Arabic

1. Dialectal transfer from large paired MSA corpora to improve ASR and MT systems (§3.1)

ALIGN, WRITE, RE-ORDER: EXPLAINABLE END-TO-END SPEECH TRANSLATION VIA OPERATION SEQUENCE GENERATION

Motoi Omachi^{1*}, Brian Yan^{2*}, Siddharth Dalmia², Yuya Fujita¹, Shinji Watanabe²

¹Yahoo Japan Corporation, Tokyo, JAPAN; ²Carnegie Mellon University, PA, USA

ABSTRACT

The black-box nature of end-to-end speech translation (E2E ST) systems makes it difficult to understand *how* source language inputs are being mapped to the target language. To solve this problem, we would like to simultaneously generate automatic speech recognition

l lch [1] really wirklich [4] need brauche [2] it das [3]

Length Control in Speech Translation

What is a good translation?

- Correct meaning
- Correct length
 - e.g. isometric ST for subtitling

Source	It is actually the true integration of the man and the machine.			
Baseline MT	Es ist tatsächlich die wahre Integration von Mensch und Maschine.			
lsometric MT	Es ist die wirkliche Integration von Mensch und Maschine.			

```
Example from IWSLT 2022 Isometric ST Track
```

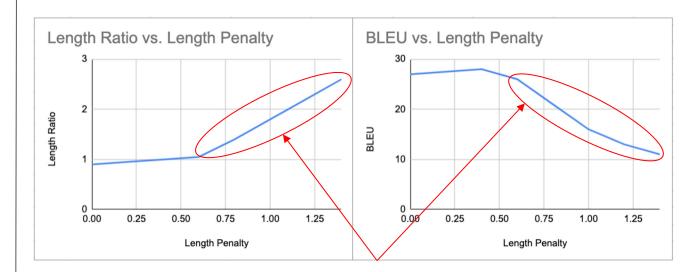
Length Control in Speech Translation

What is a good translation?

- Correct meaning
- Correct length
 - e.g. isometric ST for subtitling

Problem: autoregressive decoders do not have robust end-detection

 Reliant on length penalty/bonus hyperparameter; not robust across domains/datasets



Degenerating quality due to incorrect length penalty leading to overly long outputs

	Source	It is actually the true integration of the man and the machine.
	Baseline MT	Es ist tatsächlich die wahre Integration von Mensch und Maschine.
lsometric MT	Es ist die wirkliche Integration von Mensch und Maschine.	

Example from IWSLT 2022 Isometric ST Track

2

Length Control in Speech Translation

Problem: autoregressive decoders do not have robust end-detection

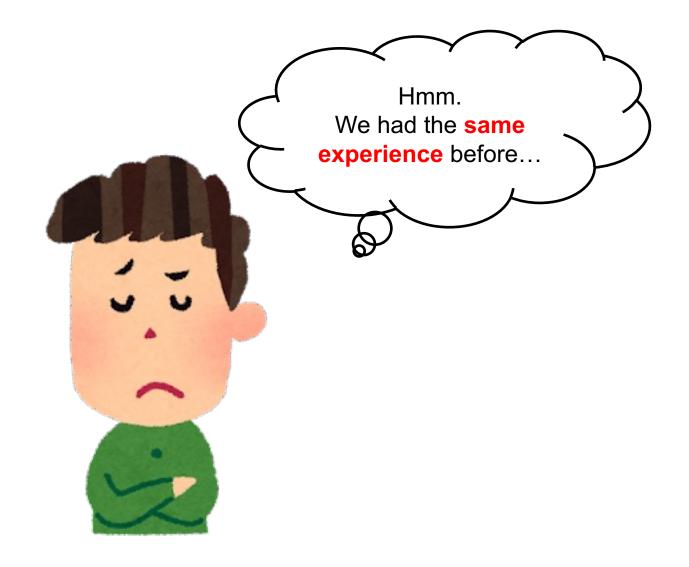
• Reliant on length penalty/bonus hyperparameter; not robust across domains/datasets

Over-tuning easily happens! This was our experience in IWSLT 2021

System	segm.	data condition	BLEU_TEDRef	
ESPNET-ST	Own	Constrained	26.0	К
HW-TSC	Own	Constrained	25.4	
KIT	Own	Constrained	25.4	
ESPNET-ST	Own	Constrained	24.7	
FBK	Own	Constrained	24.7	
UPC†	Own	Unconstrained	24.6	
APPTEK	Own	Constrained	24.5	
VOLCTRANS	Given	Constrained	24.3	
KIT	Own	Constrained	23.2	
AppTek	Own	Constrained	23.1	
NIUTRANS	Own	Constrained	22.8	
OPPO Given		Constrained	22.6	
VOLCTRANS	Given	Constrained	22.2	
VUS	Given	Constrained	13.7	
BUT	Given	Unconstrained	11.4	
Lı	Given	Constrained	0.2	

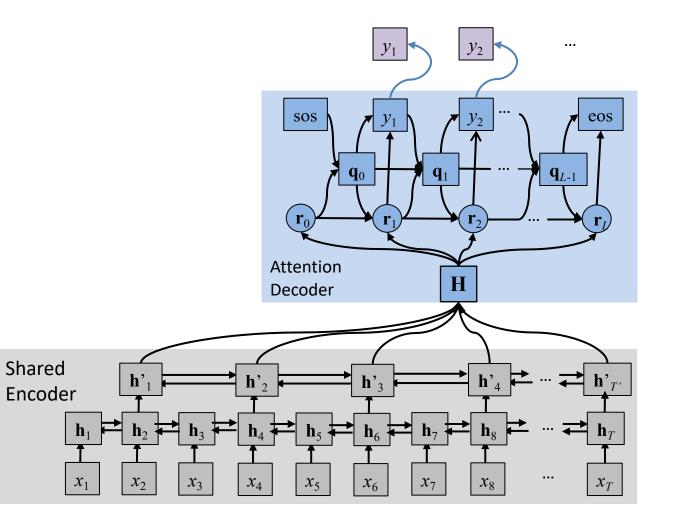
System	segm. data condition		BLEU_NewRef	BLEU_TEDRef	BLEU_MultiRef	
HW-TSC	Own	Constrained	24.6	20.3	34.0	
KIT	Own	Constrained	23.4	19.0	32.0	
AppTek	Own	Constrained	22.6	18.3	31.0	
KIT	Own	Constrained	22.0	18.1	30.3	
AppTek	Own	Constrained	21.9	18.1	30.4	
VOLCTRANS	Given	Constrained	21.8	17.1	29.5	
UPC†	Own	Unconstrained	21.8	18.3	30.6	
VOLCTRANS	Given	Constrained	21.7	18.7	31.3	
ESPNET-ST	Own	Constrained	21.7	18.2	30.6	
FBK	Own	Constrained	21.6	18.4	30.6	
OPPO	Given	Constrained	21.5	17.8	30.2	
ESPNET-ST	Own	Constrained	21.2	19.3	31.4	
NIUTRANS	Own	Constrained	20.6	19.6	30.3	
VUS	Given	Constrained	15.3	12.4	20.9	
BUT	Given	Unconstrained	11.7	9.8	16.1	
Lı	Given	Constrained	3.6	2.7	4.8	

Results on "original" blind test set; similar lengths to dev data



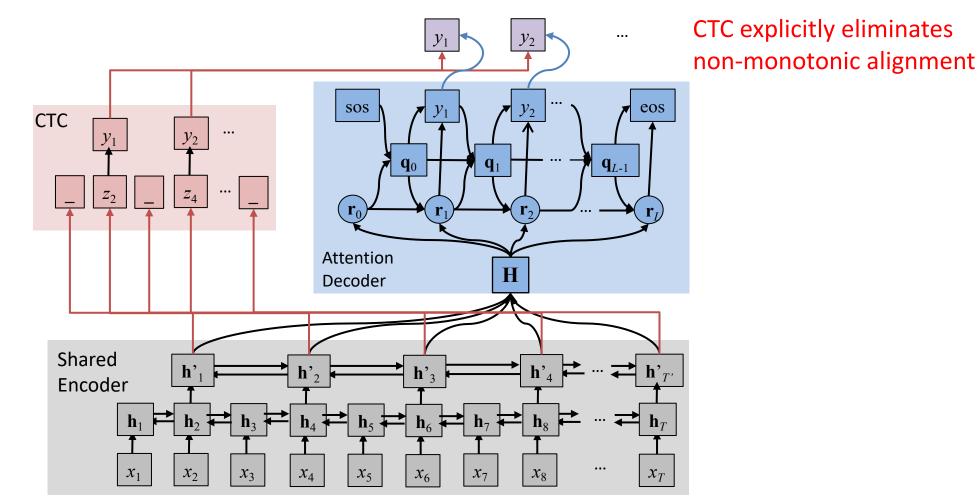
Joint CTC/Attention for ASR [Kim+ (2017), Hori+ (2017), Watanabe+ (2017)]

Joint CTC/Attention for ASR [Kim+ (2017), Hori+ (2017), Watanabe+ (2017)]



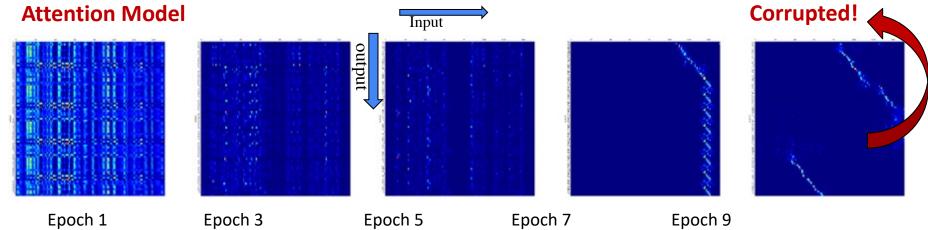
Joint CTC/Attention for ASR [Kim+ (2017), Hori+ (2017), Watanabe+ (2017)]

Use *CTC* for decoding together with the attention decoder

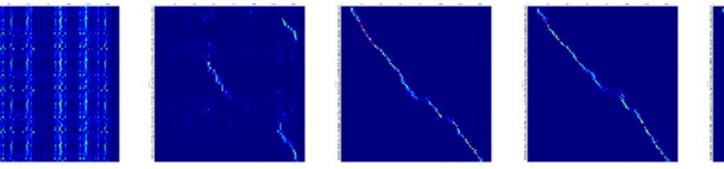


More robust input/output alignment of attention

Alignment of one selected utterance from CHiME4 ASR task



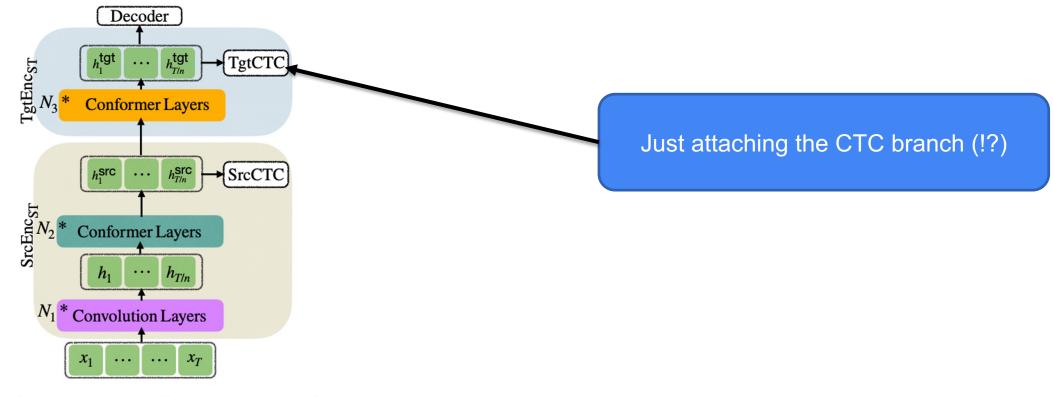
Joint CTC/attention model



Correctly control the length!

Let's Apply Joint CTC/Attention Architecture to Speech Translation

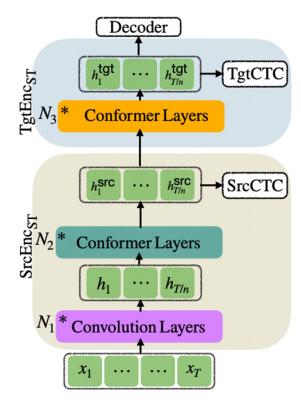
Hierarchical Encoding (ASR \rightarrow ST)



 $\mathcal{L} = \mathcal{L}_{\text{SRCCTC}} + \lambda_1 \mathcal{L}_{\text{TGTCTC}} + \lambda_2 \mathcal{L}_{\text{ATTN}}$

Let's Apply Joint CTC/Attention Architecture to Speech Translation

Hierarchical Encoding (ASR→ST)

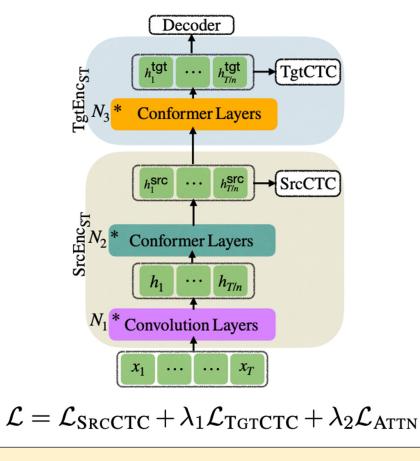


$$\mathcal{L} = \mathcal{L}_{\text{SrcCTC}} + \lambda_1 \mathcal{L}_{\text{TgTCTC}} + \lambda_2 \mathcal{L}_{\text{Attn}}$$

But wait ... CTC is **monotonic** and ST requires re-ordering

Joint CTC/Attention Architecture

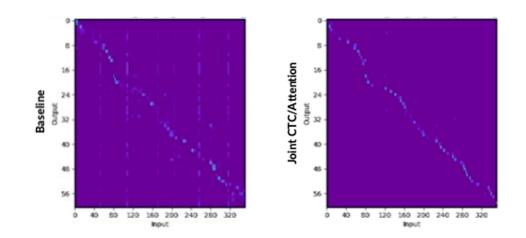
Hierarchical Encoding (ASR→ST)



But wait ... CTC is monotonic and ST requires re-ordering

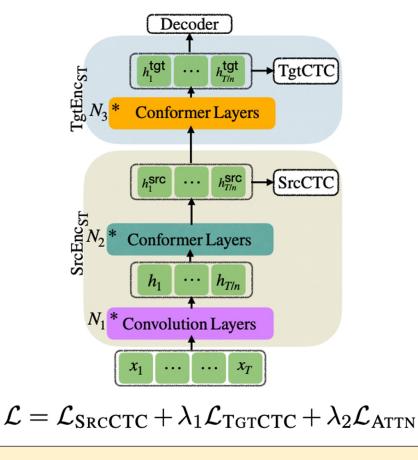
Self-attentional encoder learn to re-order

- Final encoder representations become **monotonic** w.r.t. target translations
- Decoder source attention patterns:



Joint CTC/Attention Architecture

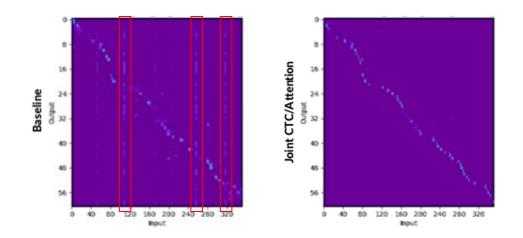
Hierarchical Encoding (ASR→ST)



But wait ... CTC is monotonic and ST requires re-ordering

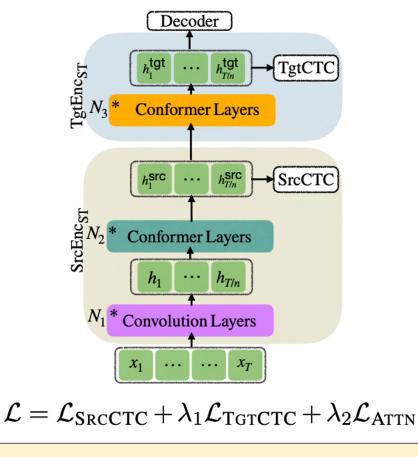
Self-attentional encoder learn to re-order

- Final encoder representations become **monotonic** w.r.t. target translations
- Decoder source attention patterns:



Joint CTC/Attention Architecture

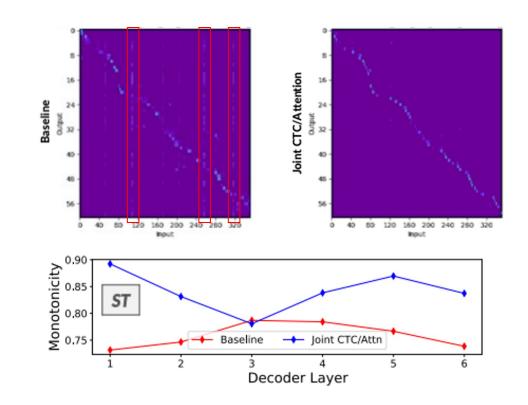
Hierarchical Encoding (ASR→ST)



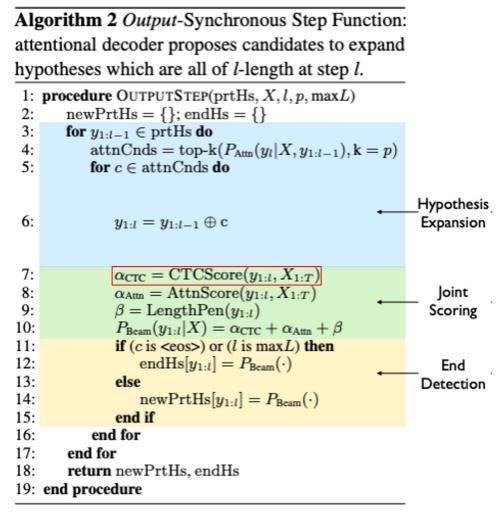
But wait ... CTC is monotonic and ST requires re-ordering

Self-attentional encoder learn to re-order

- Final encoder representations become **monotonic** w.r.t. target translations
- Decoder source attention patterns:



Joint CTC/Attention Decoding: 2 Synchronous Methods



CTC prefix scores **indirectly** help end-detection by penalizing hypotheses of incorrect length

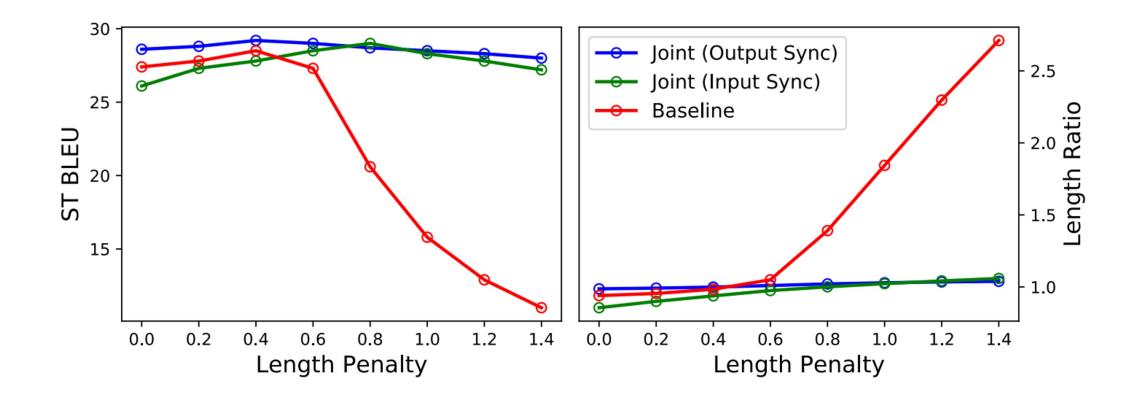
Joint CTC/Attention Decoding: 2 Synchronous Methods

Algorithm 2 Output-Synchronous Step Function:			Al	gorithm 3 Input-Synchronous Step Function:		
attentional decoder proposes candidates to expand		CTC proposes candidates to expand hypothes				
hypotheses which are all of <i>l</i> -length at step <i>l</i> .				ich are all produced from t input units at step t .		
	procedure OUTPUTSTEP(prtHs, X, l, p, maxL)			procedure INPUTSTEP(prtHs, X, t, p, T)		
2:	$newPrtHs = \{\}; endHs = \{\}$		2:	$newPrtHs = \{\}; endHs = \{\}$		
3:	for $y_{1:l-1} \in \operatorname{prtHs} \operatorname{do}$		3:	$CTCCnds = top-k(P_{CTC}(z_t X), k = p)$		
4:	$\operatorname{attnCnds} = \operatorname{top-k}(P_{\operatorname{Attn}}(y_l X, y_{1:l-1}), \mathbf{k} = p)$		4:	for $y \in \operatorname{prtHs} \operatorname{do}$		
5:	for $c \in \operatorname{attnCnds} \operatorname{\mathbf{do}}$		5:	for $c \in CTCCnds$ do		
			6:	if $(c \text{ is } \emptyset)$ or $(c \text{ is } y[-1])$ then		
		_Hypothesis				
6:	$y_{1:l}=y_{1:l-1}\oplus \mathrm{c}$	Expansion	8:	else		
			9:	$ ilde{y} = y \oplus \mathrm{c}$		
			10:			
7:	$\alpha_{\text{CTC}} = \text{CTCScore}(y_{1:l}, X_{1:T})$		11:			
8:	$\alpha_{\text{Attn}} = \text{AttnScore}(y_{1:l}, X_{1:T})$	Joint	12:			
9:	$\beta = ext{LengthPen}(y_{1:l})$	Scoring	13:			
10:	$P_{ ext{Beam}}(y_{1:l} X) = lpha_{ ext{CTC}} + lpha_{ ext{Attn}} + eta$		14:			
11:	if $(c \text{ is } \langle eos \rangle)$ or $(l \text{ is } maxL)$ then		15:			
12:	$endHs[y_{1:l}] = P_{Beam}(\cdot)$	End	16:			
13:	else	Detection	17:	else		
14:	$ ext{newPrtHs}[y_{1:l}] = P_{ ext{Bcam}}(\cdot)$		18:	$ ext{newPrtHs}[ilde{y}] = P_{ ext{Beam}}(\cdot)$		
15:	end if		19:			
16:	end for		20:	end for		
17:	end for		21:			
18:	return newPrtHs, endHs		22:	return newPrtHs, endHs		
19:	end procedure		23:	end procedure		

CTC prefix scores **indirectly** help end-detection by penalizing hypotheses of incorrect length

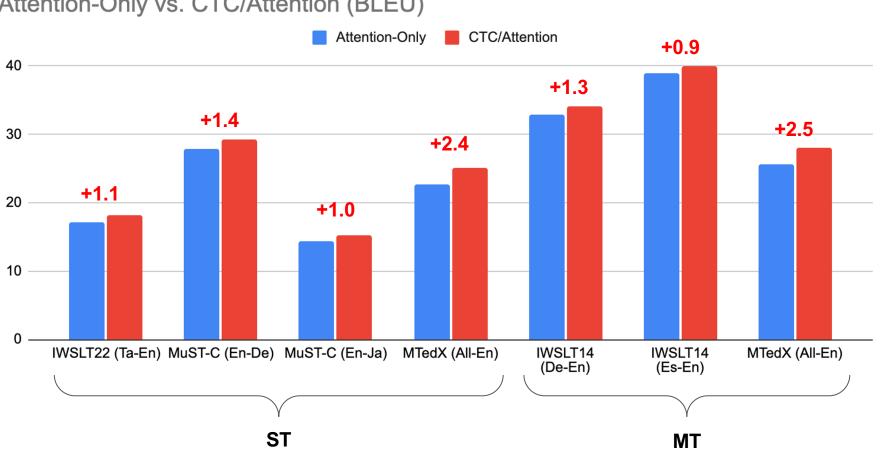
CTC directly handles end-detection by consuming all input frames

Joint CTC/Attention: Robust End-Detection



Carefully tuning length penalty may not be necessary!

Joint CTC/Attention: Results



Attention-Only vs. CTC/Attention (BLEU)

Goodbye overturning!

			Child	Dialect	test1	test2
ID	Туре	Model Name	System(s)	Transfer	BLEU(†)	BLEU(†)
C1	Cascade	ASR Mixing Cascade	A1,B1	X	16.4	-
C2	Cascade	+ ASR Rover Comb.	A2,B1	×	16.7	-
С3	Cascade	+ MT Posterior Comb.	A2,B2	×	17.5	18.6
C4	Cascade	ASR Mixing Cascade	A3,B3	1	17.3	-
C5	Cascade	+ ASR Rover Comb.	A4,B3	\checkmark	17.4	-
C6	Cascade	+ MT Posterior Comb.	A4,B4	\checkmark	17.9	19.4
D1	E2E ST	Hybrid Multi-Decoder	-	×	17.7	_
D2	Mix	+ ROVER Intermediates	A2	×	18.1	19.1
D3	Mix	+ ST/MT Posterior Comb.	A2,B5	×	18.7	19.7
D4	E2E ST	Hybrid Multi-Decoder	-	\checkmark	18.2	-
D5	Mix	+ ROVER Intermediates	A4	\checkmark	18.3	19.5
D6	Mix	+ ST/MT Posterior Comb.	A4,B5	\checkmark	18.9	19.8
E1	Mix	Min. Bayes-Risk Ensemble	C3,D3	×	19.2	20.4
E2	Mix	Min. Bayes-Risk Ensemble	C6,D6	1	19.5	20.8

Our tuning efforts have high correlation with the blind test set (test2)

Table 3: Results of our cascaded, E2E, and integrated cascaded/E2E systems as measured by BLEU score on the blind test2 and provided test1 sets. *Dialect Transfer* indicates the use of either MGB2 or OPUS data. Rover, posterior combinations, and minimum bayes-risk ensembling were applied to both cascaded and E2E systems, with *Child System(s)* indicating the inputs to the resultant systems combinations.

Goodbye overturning!

Team / Condition / System	Architecture	Training Data	BLEU	Δ
CMU / basic / E1	Mix	TA/EN	20.4	-
CMU / dialect adapt / E2	Mix	TA/EN + MSA/EN	20.8	0.4
JHU / basic / primary	Cascaded	TA/EN	17.1	-
JHU / dialect adapt / primary	Cascaded	TA/EN + MSA/EN	18.9	1.8
ON-TRAC / basic /primary	End-to-End	TA/EN	12.4	-
ON-TRAC / unconstrained / post-eval	Cascaded	TA/EN + MSA/EN	14.4	2.0

Table 6: Summary of select systems for Dialect Shared Task (BLEU on test2). We highlight the BLEU improvements (Δ) obtained when training with additional MSA/English data compared with just the Tunisian/English (TA/EN) in the basic condition.

> Anastasopoulos, Antonios, et al. "Findings of the IWSLT 2022 Evaluation Campaign." Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022). 2022.

We got the nice result this time ③

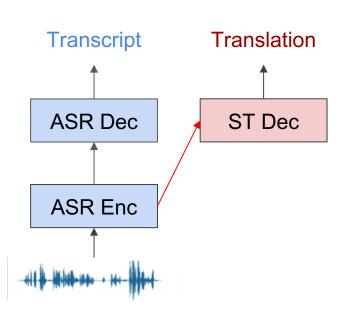
Today's Talk

- CMU's IWSLT 2022 Dialect Speech Translation System
 - **Part 1:** Controlling ST output lengths via joint CTC/attention
 - **Part 2:** Controlling/explaining ST via searchable ASR intermediates

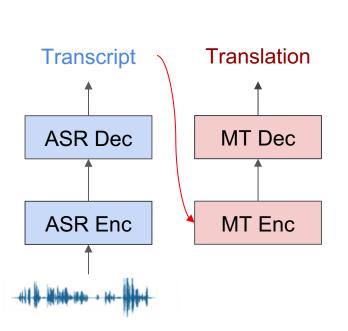
- Explainable E2E Speech Translation via Operation Sequence Generation
 - **Part 3:** Explaining ST via word-level ASR alignments

Better Speech Translation via Better Speech Recognition

Vanilla E2E (w/ ASR Multi-Task)



ASR and ST decodings are independent / parallel

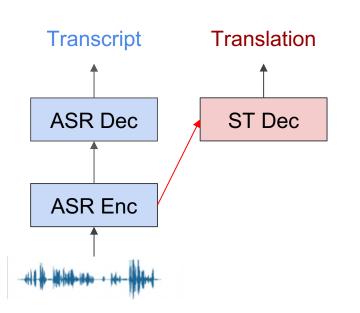


Fully Cascaded

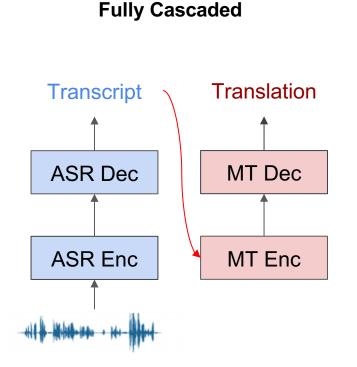
Better transcription likely to yield better translation

Better Speech Translation via Better Speech Recognition

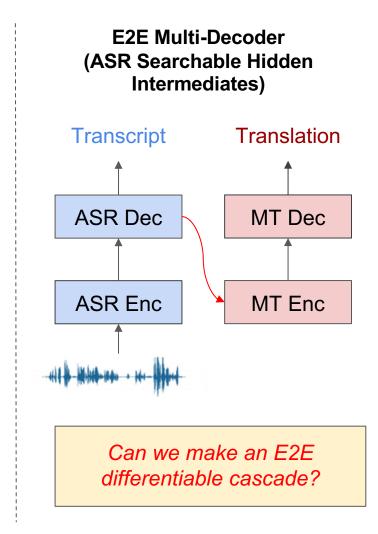
Vanilla E2E (w/ ASR Multi-Task)



ASR and ST decodings are independent / parallel



Better transcription likely to yield better translation



ASR Decoder State

E2E ASR based on attention

• Transcript is obtained by the conditional likelihood

$$\operatorname{argmax}_{W} p(W|O) = \operatorname{argmax}_{W} \prod_{j} p(w_{j}|\mathbf{h}_{j})$$

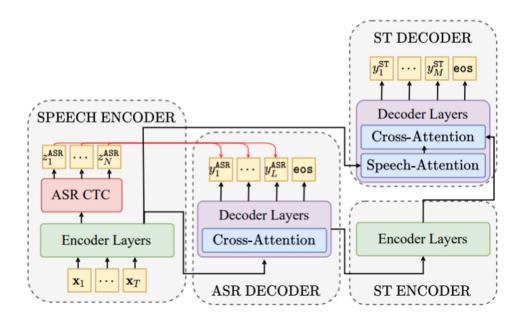
• ASR decoder state

$$\mathbf{h}_{j} = \text{Decoder}(\mathbf{h}_{j-1}, \mathbf{w}_{j-1}, \text{Encoder}(\mathbf{0}))$$

- ASR decoder state is *differentiable* (no argmax)
- ASR decoder state is *searchable*
 - During inference, w_{j-1} is obtained by search or fusion (beam search with a language model etc.)
 - \rightarrow We can incorporate various information with the decoder state \mathbf{h}_i
 - We call it Searchable Intermediates
- Note that the ASR encoder state **does not** have this property
 - $\mathbf{z}_t = \text{Encoder}(O)$ does not have the token dependency

Searchable ASR Hidden Intermediates:

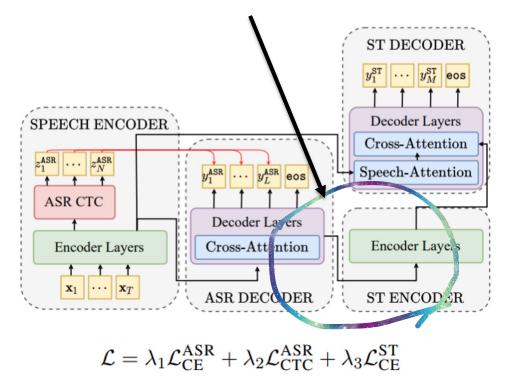
During inference, ASR decoder representations are retrieved (e.g. via beam search) and passed to the subsequent ST Encoder



 $\mathcal{L} = \lambda_1 \mathcal{L}_{\text{CE}}^{\text{ASR}} + \lambda_2 \mathcal{L}_{\text{CTC}}^{\text{ASR}} + \lambda_3 \mathcal{L}_{\text{CE}}^{\text{ST}}$

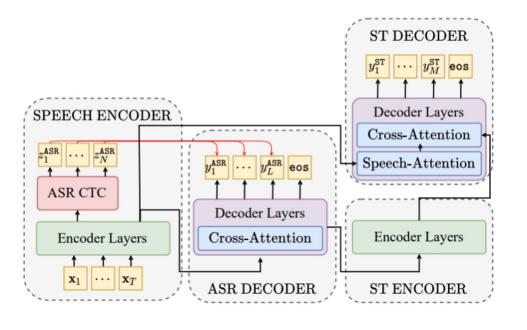
Searchable ASR Hidden Intermediates:

During inference, ASR decoder representations are retrieved (e.g. via beam search) and passed to the subsequent ST Encoder

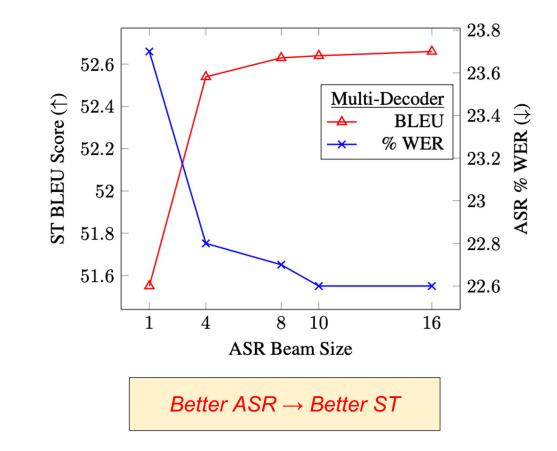


Searchable ASR Hidden Intermediates:

During inference, ASR decoder representations are retrieved (e.g. via beam search) and passed to the subsequent ST Encoder

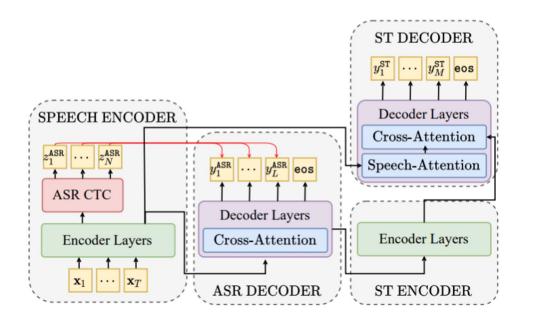


 $\mathcal{L} = \lambda_1 \mathcal{L}_{\text{CE}}^{\text{ASR}} + \lambda_2 \mathcal{L}_{\text{CTC}}^{\text{ASR}} + \lambda_3 \mathcal{L}_{\text{CE}}^{\text{ST}}$



Searchable ASR Hidden Intermediates:

During inference, ASR decoder representations are retrieved (e.g. via beam search) and passed to the subsequent ST Encoder



 $\mathcal{L} = \lambda_1 \mathcal{L}_{\text{CE}}^{\text{ASR}} + \lambda_2 \mathcal{L}_{\text{CTC}}^{\text{ASR}} + \lambda_3 \mathcal{L}_{\text{CE}}^{\text{ST}}$

We can guide ASR hidden intermediate retrieval using external models!

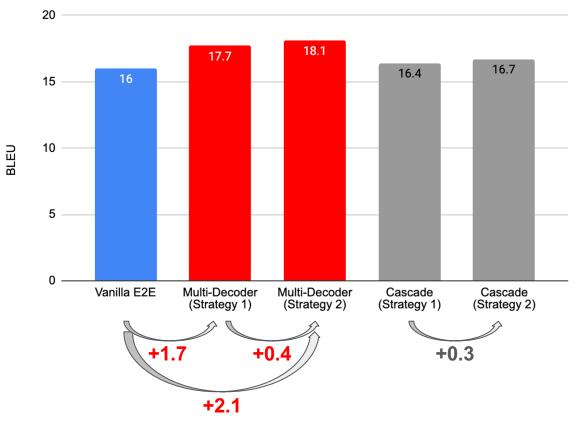
Strategy 1:

Beam search over ASR output w/ use of external models (e.g. LM, CTC)

Strategy 2:

Use of post-processing to improve ASR output (e.g. ROVER ensembling)

Multi-Decoder with Searchable Hidden Intermediates



IWSLT22 Dialectal Ta-En BLEU

We can guide ASR hidden intermediate retrieval using external models!

Strategy 1:

Beam search over ASR output w/ use of external models (e.g. LM, CTC)

Strategy 2:

Use of post-processing to improve ASR output (e.g. ROVER ensembling)

Today's Talk

- CMU's IWSLT 2022 Dialect Speech Translation System
 - **Part 1:** Controlling ST output lengths via joint CTC/attention
 - **Part 2:** Controlling/explaining ST via searchable ASR intermediates

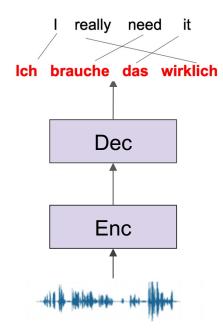
- Explainable E2E Speech Translation via Operation Sequence Generation
 - **Part 3:** Explaining ST via word-level ASR alignments

Which one is more explainable?

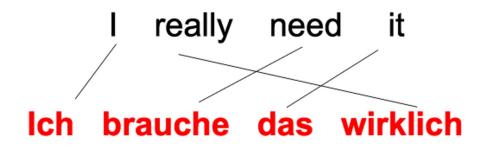
Word-Level Speech Translation Explanations

Vanilla E2E (w/ ASR Multi-Task) I really need it Ich brauche das wirklich ASR Dec ST Dec ASR Enc

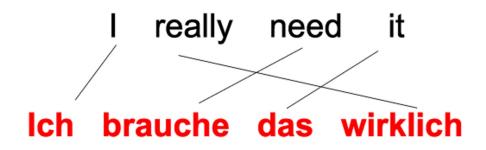
ASR and ST decodings are independent / parallel



Can we simultaneously generate ASR/ST predictions + **word-level alignments**?

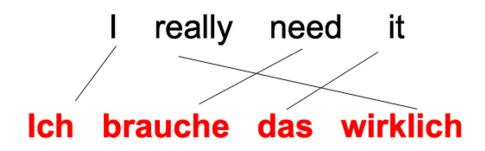


Our goal is to get the speech translation result via this aligned information



(I, [Position A], Ich) (really, [Position B], wirklich) (need, [Position C], brauche) (it, [Position D], das)

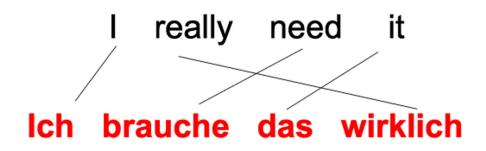




(I, [Position A], Ich) (really, [Position B], wirklich) (need, [Position C], brauche) (it, [Position D], das)

Ich wirklich brauche das

Write the aligned (synchronized) translation result

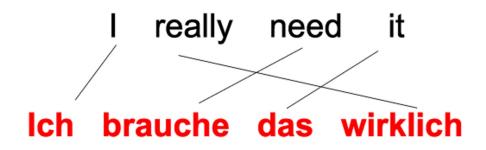


(I, [Position A], Ich) (really, [Position B], wirklich) (need, [Position C], brauche) (it, [Position D], das)

Ich wirklich brauche das

Ich brauche das wirklich

Reorder to get the final translation result



(I, [Position A], Ich) (really, [Position B], wirklich) (need, [Position C], brauche) (it, [Position D], das)

Ich wirklich brauche das

Ich brauche das wirklich

- Explainable
 - Easy to analyze
- Streamable
 - Get the translation result as soon as we get the ASR result

Operation Sequence Generation: Absolute Position

Objective: represent ASR/ST + word-alignment information as a single sequence

Strategy 1:

- Obtain word-level alignments on training data using statistical aligner (e.g. GIZA++)
- Define sequence of tuples of (source word, target word **absolute position**, target word)
- Insert target words into correct order in post-processing

(I, [0], Ich) (really, [3], wirklich) (need, [1], brauche) (it, [2], das)

Absolute position operation sequence

• By predicting target word absolute positions, we can generating translations **out-of-order** (while generating transcriptions **in-order**)

Operation Sequence Generation: Relative Shift

Strategy 2:

- Obtain word-level alignments on training data using statistical aligner (e.g. GIZA++)
- Define sequence of tuples of (source word, target word **relative shift**, target word)
- Insert target words into correct order in post-processing

Shifting Write-Head Operations Based on prior MT work (Stahlberg et al., 2018)	Raw System Output (Operation Sequence) I [NO_OP] Ich have [NO_OP] habe spent [SET_MARKER] damit verbracht the [JMP_BWD] die
[NO_OPS] - no operation [SET_MARKER] - place write-head marker [JMP_FWD] - jump right to next write-head marker [JMP_BWD] - jump left to prev write-head marker [NO_SRC] - no aligned source word [NO_TGT] - no aligned target word [EOP] - end of tuple (not displayed for space)	Transcription I have spent the Translation Ich habe die damit verbracht *

Special thanks to Prof. Graham Neubig

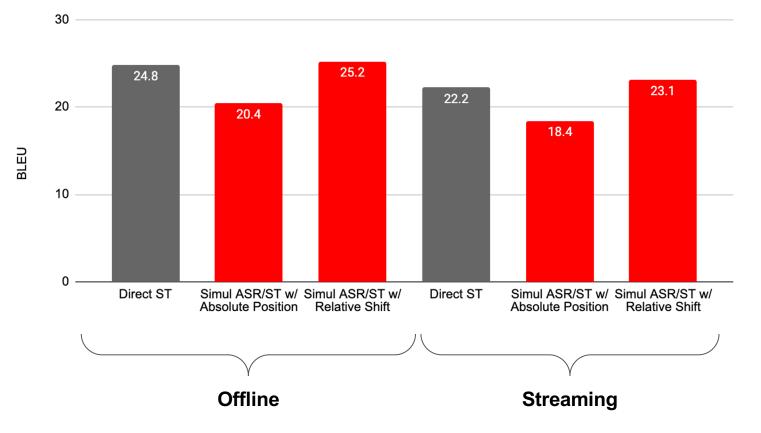
Operation Sequence Generation: Training and Inference

- Training:
 - After the data preparation, we *just throw it* to E2E ST Training (only data preparation)
- Inference:
 - **just throw it** to E2E ST beam search
 - Extract translation results with re-ordering

Demo: https://i.imgur.com/9MT5NoH.gifv

Operation Sequence Generation: Results

MuST-C En-De ST BLEU



Absolute Position:

Difficult to generalize; performance lags behind direct ST models

Relative Shift: On-par with direct ST models \rightarrow achieves explainability without sacrificing performance!

Takeaways

End-to-end systems do not have to be black-boxes:

- **Part 1:** CTC alignments stabilize the length problem of autoregressive decoders
- **Part 2:** External model correction of searchable ASR intermediates improves ST
- **Part 3:** Word-level explainability does not sacrifice translation quality

We are putting them to ESPnet **ESPNet**

Let's work together on Controllable and Explainable E2E Speech Translation!

Thank You!

Carnegie Mellon University Language Technologies Institute

