CMU's IWSLT 2023 Simultaneous Speech Translation System

Brian Yan, Jiatong Shi, Soumi Maiti, William Chen, Xinjian Li, Yifan Peng, Siddhant Arora and Shinji Watanabe

System Overview

- 1. Offline ST using joint CTC/attention with self-supervised speech/text representations
- 2. Offline-to-online adaptation via chunk-based encoding and incremental beam search
- **ascaded simultaneous S2ST** by feeding incremental text outputs to a TTS model

Data:

- MuST-C + Tedlium (w/ MT pseudo-labels) for ST
- CommonVoice subset for TTS

Offline ST: Joint CTC/Attention + SSL/LLM

• Large scale model (~900M trainable params) with WavLM and mBART initializations

Cascaded Simultaneous S2ST

• Single-speaker VITS TTS model with character input

• CommonVoice data selection:

- Evaluated the speech quality (DNSMOS) of top 5 most speakers by # of utterances
- Set a threshold of 4.0 for selecting utterances
- Choose the single speaker with most hours (12h)
- Cascaded inference on incremental text decodings (which correspond to $\sim 2.5s$ of input speech)

Image Source: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

Offline-to-Online: Incremental Encoding/Decoding

• Directly use offline ST model for online inference via incremental strategies

Incremental Encoding

Re-compute encoder representations for each incremental chunk of speech

2s for speech-to-text Ο 2.5s for speech-to-speech Ο

Results

- 6% quality degradation from ST to SST (~60% lagging reduction)
- 12% quality degradation from SST to SS2ST (includes ASR errors from ASR-BLEU)

MODEL	QUALITY	LATENCY		25	
OFFLINE SPEECH TRANSLATION (ST)	BLEU ↑	_			
Multi-Decoder CTC/Attn (Yan et al., 2023b)	30.1	-	-2		
WavLM-mBART CTC/Attn (Ours)	32.5	-	 3		
SIMUL SPEECH TRANSLATION (SST)	BLEU \uparrow	$AL\downarrow$	$LAAL\downarrow$	-2 1 BI F	
Time-Sync Blockwise CTC/Attn (Yan et al., 2023b)	26.6	1.93	1.98		U
WavLM-mBART CTC/Attn (Ours)	30.4	1.92	1.99		
SIMUL SPEECH-TO-SPEECH TRANSLATION (SS2T)	ASR-BLEU↑	SO↓	EO↓	-3.7 BLE	U
WavLM-mBART CTC/Attn + VITS (Ours)	26.7	2.33	5.67		

CMU-LTI WAVLab

{byan, jiatongs}@cs.cmu.edu

Feed-forward and self-attentio lavers are frozen

Incremental Decoding

Algorithm 1 Beam search step with rewinding of unreliable hypotheses on non-final chunks and incremental pruning upon end-detection.

1:	procedure BEAMSTEP(hyps, prevHyps, isFinal)
2:	$newHyps = \{\}; endDetected = False$
3:	for $y_{1:l-1} \in \operatorname{prtHs} \operatorname{do}$
4:	$attnCnds = top-k(P_{Attn}(y_l X, y_{1:l-1}), k = p)$
5:	for $c \in \operatorname{attnCnds} \operatorname{do}$
6:	$y_{1:l}=y_{1:l-1}\oplus \mathrm{c}$
7:	$lpha_{ ext{CTC}} = ext{CTCScore}(y_{1:l}, X_{1:T})$
8:	$\alpha_{\text{Attn}} = \text{AttnScore}(y_{1:l}, X_{1:T})$
9:	$eta = ext{LengthPen}(y_{1:l})$ Joint CTC/attn scoring
10:	$P_{ ext{Beam}}(y_{1:l} X) = lpha_{ ext{CTC}} + lpha_{ ext{Attn}} + eta$
11:	$\text{newHyps}[y_{1:l}] = P_{\text{Beam}}(\cdot)$
12:	if (!isFinal) and (c is <eos> or repeat) then</eos>
13:	endDetected = True
14:	$newHyps = prevHyps$ \triangleright rewind
15:	else if l is max L then
16:	endDetected = True End-of-chunk detection
17:	end if
18:	end for
19:	end for Pruning
20:	if endDetected then > incremental pruning
21:	$newHyps = top-k(P_{Beam}(\cdot), k = 1)$
22:	else ▷ standard pruning
23:	newHyps = top-k($P_{\text{Beam}}(\cdot), \mathbf{k} = b$)
24:	end if
25:	return newHyps, endDetected
26:	end procedure