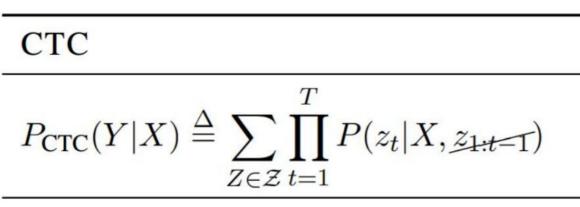
CTC Alignments Improve Autoregressive Translation

Brian Yan, Siddharth Dalmia, Yosuke Higuchi, Graham Neubig, Florian Metze, Alan W Black, Shinji Watanabe

CTC vs. Attention



Hard Alignment

Criterion only allows monotonic alignments of inputs to outputs

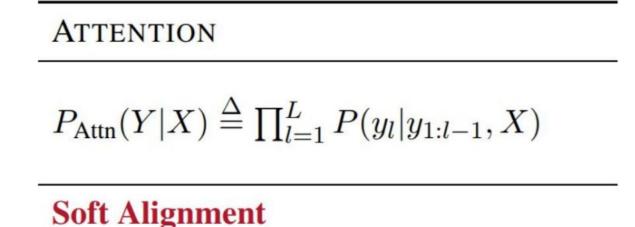
Conditional Independence

Assumes that there are no dependencies between each output unit given the input

Input-Synchronous Emission

Each input representation emits exactly one blank or non-blank output token

Weaker for translation (Gu+ 2021, Huang+ 2022)



Flexible attention-based input-to-output mappings may overfit to irregular patterns

mappings may overfit to irregular patterns

Conditional Dependence

Lecally namedized made

Locally normalized models with output dependency exhibit label/exposure biases

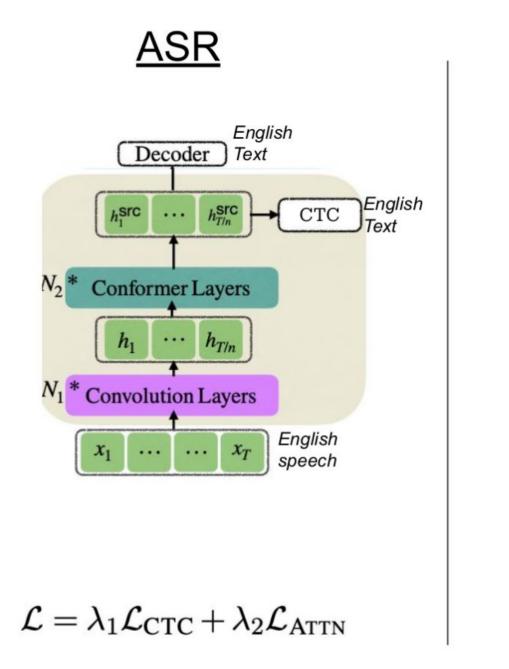
Autoregressive Generation

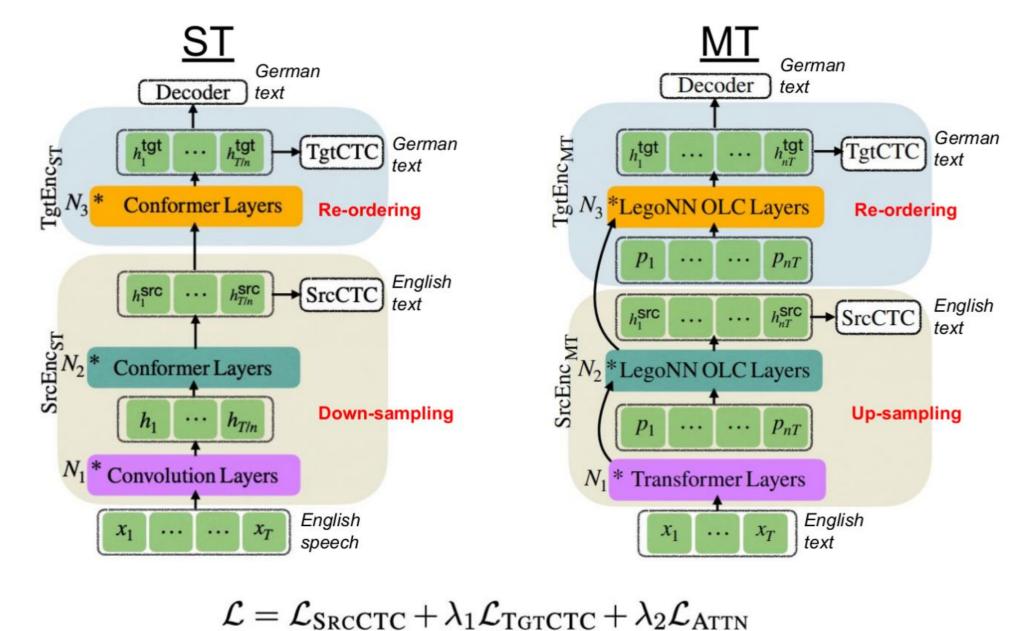
Need to detect end-points and compare hypotheses of different length in beam search

But attention is not perfect (Murray+ 2018, Hannun+ 2019, Watanabe+ 2018)

Joint Training with Hierarchical CTC

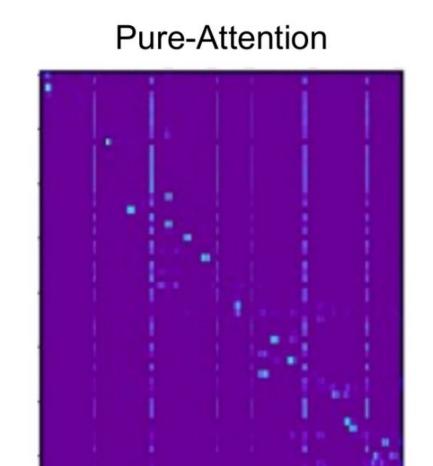
- For ASR, CTC and attention simply share a monolithic encoder
- For MT/ST, we decompose the encoder into 2 stages: 1) length-adjustment 2) re-ordering

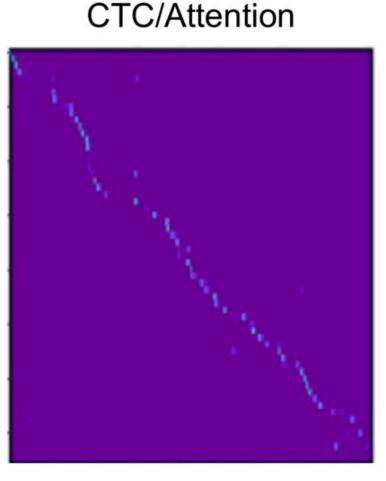


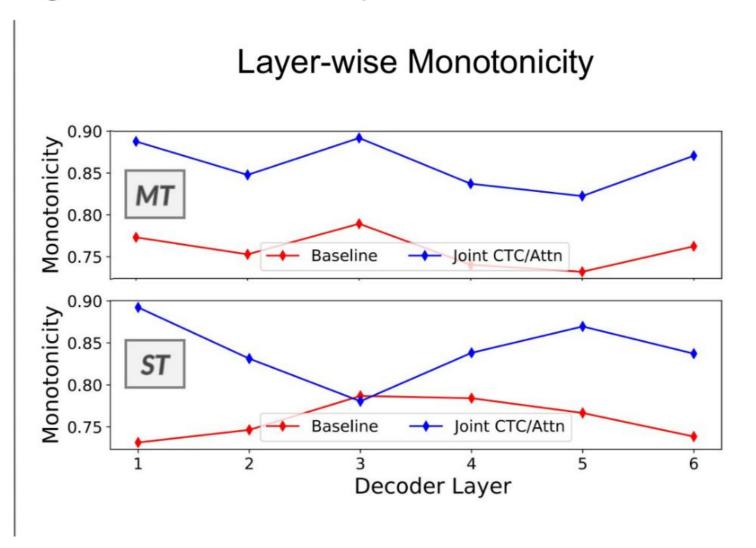


Reduced Soft Alignment Burden

- Hard alignment + soft alignment
 - Conjecture: hard alignment objective produces stable encoder representations allowing the decoder to more easily learn soft alignment patterns during training
 - o Concern: can CTC encoders perform input-to-output mappings for translation?
 - o Finding: joint training results in more regular, diagonal source-attention patterns

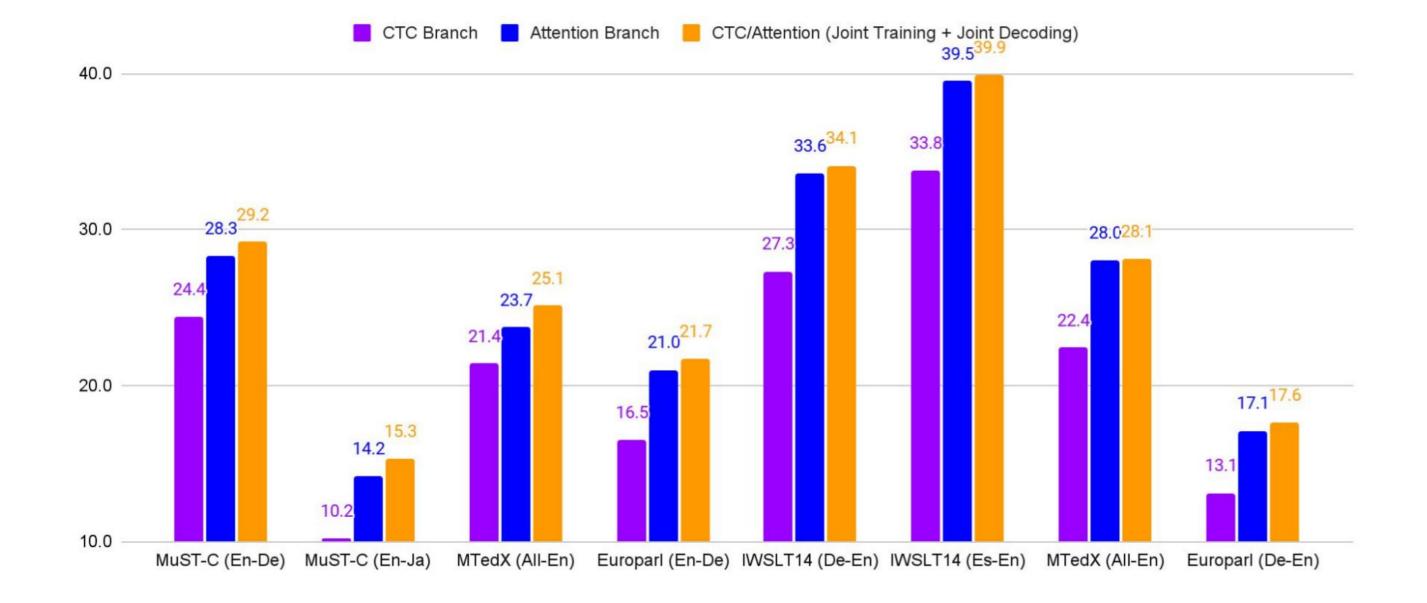






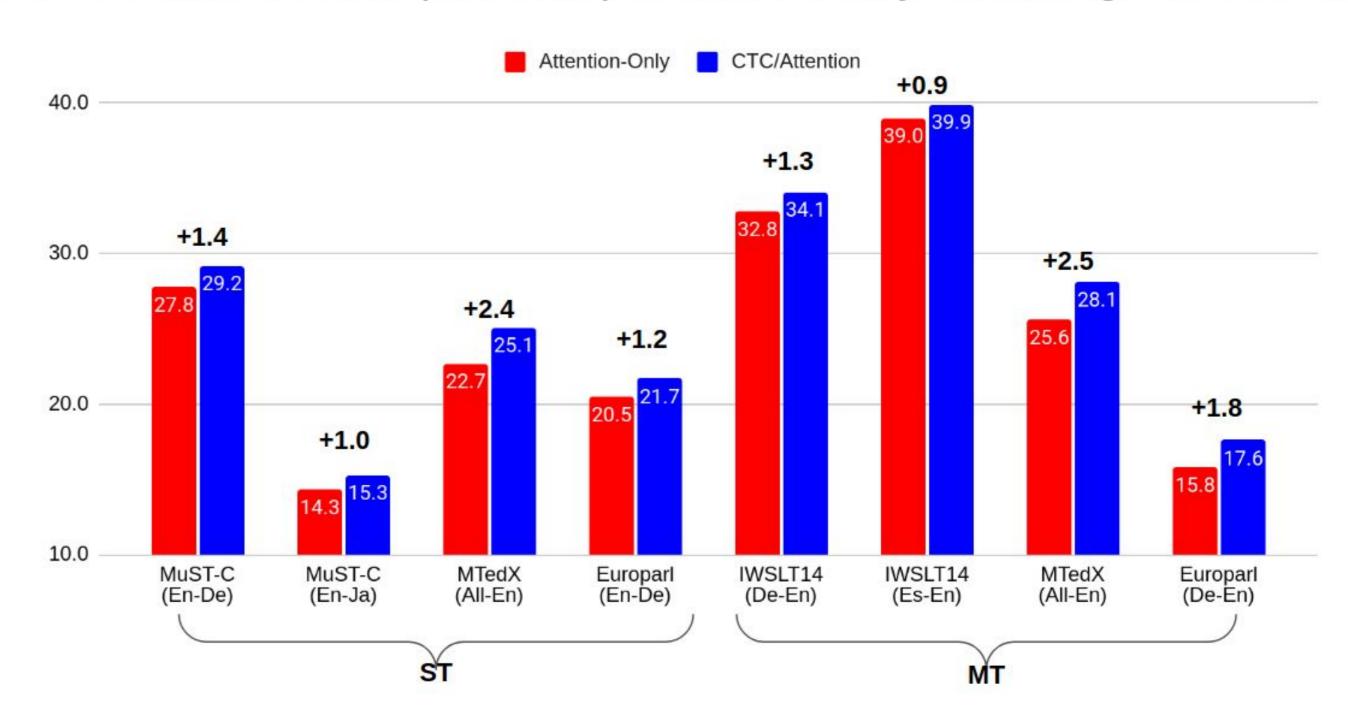
Positive Ensembling Effect

- Conditional independence + conditional dependence
 - Conjecture: use of conditionally independent likelihoods in joint scoring eases the exposure/label biases from conditionally dependent likelihoods during decoding
 - Concern: does CTC translation quality lag too far behind attention to be useful?
 - Finding: even weak CTC models provide a positive ensembling effect
 - Joint decoding yields an average of +0.7 BLEU improvement over the attention branch
 - For jointly trained models, attention branch outperforms CTC branch by an avg. of **+4.5** BLEU



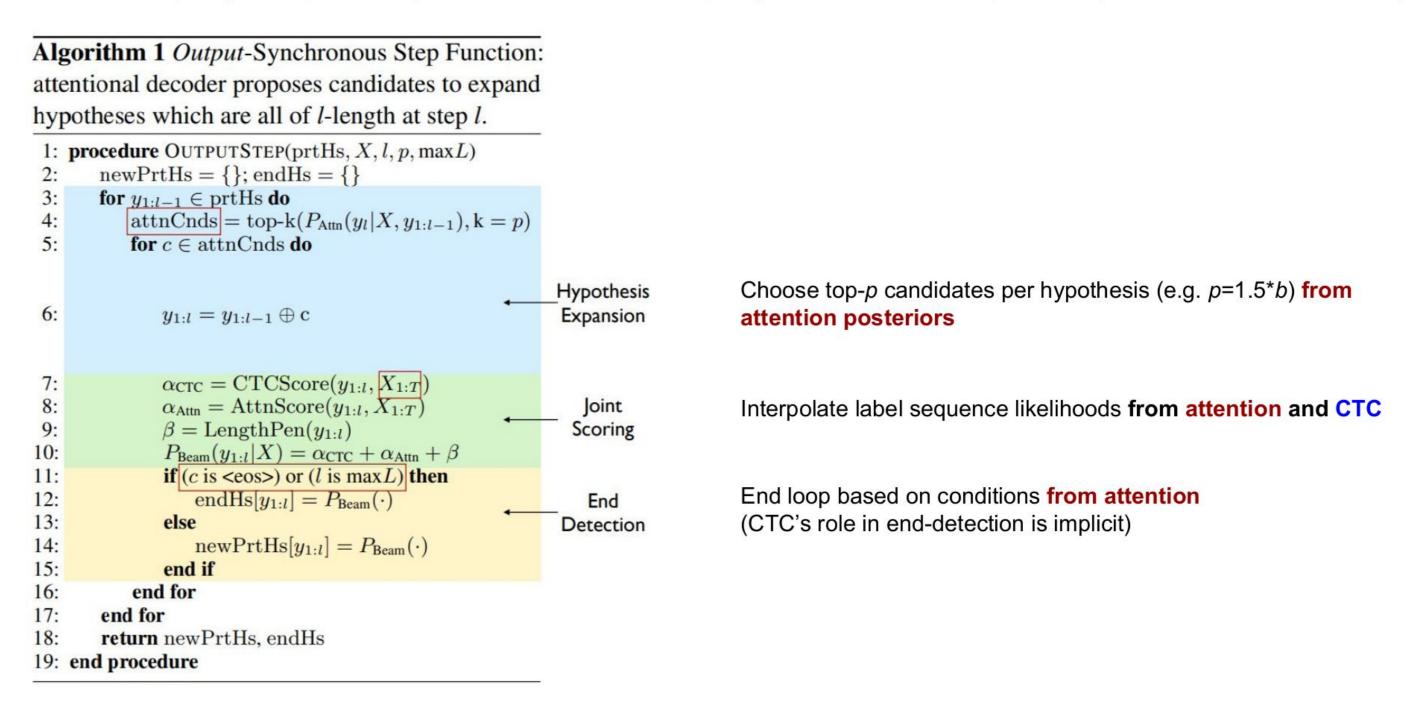
Joint CTC/Attention: Results

Joint CTC/attention outperforms pure-attention by an average of +1.6 BLEU



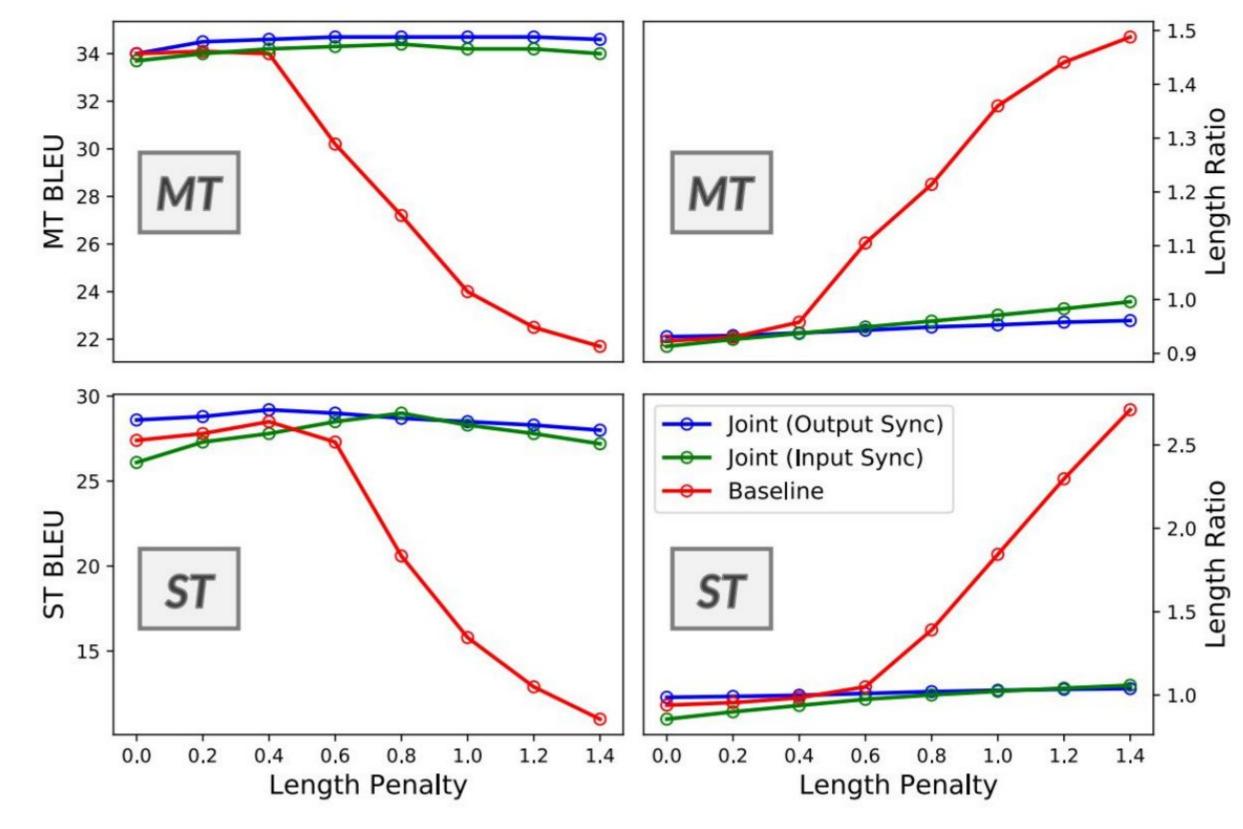
Joint Decoding with Output-Sync Beam Search

Attention plays a primary role while CTC plays a secondary role (Watanabe+ 2018)



Robust End-Detection

- Input synchronous emission + autoregressive generation
 - Conjecture: input-synchronous emission determines output length based on input length counteracting the autoregressive end-detection problem during decoding
 - o Concern: is the alignment information from CTC translation models reasonable?
 - Finding: Joint CTC/attention decoding has low length penalty elasticity
 - Sanity check: input-sync beam search, where CTC plays the
 - Pure-attention models are highly sensitive to length penalty → easily overtuned



TLDR

- What did we do?
 - Applied joint CTC/attention to MT/ST with only minor changes from ASR
- Why did we do it?
- ČTC may be weaker for translation, but attention is not perfect either
- CTC and attention have complementary properties
- How can I try it too?
- Code and recipes are open-sourced in ESPnet

